Publications by authors named "Yuzhan Li"

Neuroblastoma, a prevalent and lethal extracranial solid tumor in childhood, remains a significant challenge in pediatric oncology worldwide. High-risk neuroblastoma (HR-NB) is particularly aggressive and linked to a poor prognosis due to the limited availability of effective treatments. The aberrant amplification of the gene is a critical genetic alteration observed in neuroblastoma conferring poorer clinical outcomes.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) are versatile soft actuators known for their flexible texture, low density, and ability to undergo reversible deformations that mimic the behavior of skeletal muscles. These properties make them highly attractive for applications in exoskeletons, soft robotics, and medical devices. However, their functionality is typically limited to simple and discontinuous deformations.

View Article and Find Full Text PDF

Background: The objective of this study was to investigate the input and output of energy, carbon input and sequestration, and economic benefits of fragrant and nonfragrant rice under different crop management practices, with the aim of providing theoretical guidance for sustainable rice production. Two high-yield and popular rice varieties, Yuxiangyouzhan and Jiyou615, were grown under three nitrogen fertilizer levels (0, 150, and 220 kg ha) and three planting methods (manual transplanting, mechanical transplanting, and mechanical direct seeding) during 2018 and 2019.

Results: The results showed that the economic, energy, and carbon benefits of the different rice varieties varied in response to the different fertilizations and planting methods.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation.

View Article and Find Full Text PDF
Article Synopsis
  • A new liquid crystalline epoxy network (LCEN) with shape memory properties was created to explore its suitability for 3D printing.
  • Researchers analyzed the curing process and shape memory qualities using parallel plate rheology and dynamic mechanical analysis, respectively.
  • The addition of fumed silica improved the uncured material's rheological properties, enhancing its printability while maintaining the shape memory features of the LCEN, although it affected the liquid crystalline alignment.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how the thermal annealing of poly(3-hexylthiophene) (P3HT) thin films on silicon dioxide substrates affects their crystalline structure and charge transport properties, noting that short-time annealing improves molecular ordering while long-time annealing disrupts it.
  • - Prolonged heat exposure leads to irreversible adsorption of P3HT chains at the polymer-solid interface, forming an amorphous layer that diminishes the film's overall crystallinity and disrupts ordering throughout the material.
  • - The research shows that optimal electrical performance in organic field-effect transistors (OFETs) is achieved with carefully timed annealing, balancing molecular ordering and the negative effects of chain adsorption, thereby enhancing charge carrier
View Article and Find Full Text PDF

The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors.

View Article and Find Full Text PDF

Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes.

View Article and Find Full Text PDF

Electrically driven multi-stable cholesteric liquid crystals can be used to adjust the transmittance of incident light. Compared with the traditional liquid crystal optical devices, the multi-stable devices only apply an electric field during switching and do not require a continuous electric field to maintain the various optical states of the device. Therefore, the multi-stable devices have low energy consumption and have become a research focus for researchers.

View Article and Find Full Text PDF

Deformable superstructures are man-made materials with large deformation properties that surpass those of natural materials. However, traditional deformable superstructures generally use conventional materials as substrates, limiting their applications in multi-mode reconfigurable robots and space-expandable morphing structures. In this work, amine-acrylate-based liquid crystal elastomers (LCEs) are used as deformable superstructures substrate to provide high driving stress and strain.

View Article and Find Full Text PDF

Liquid-crystal elastomers (LCEs) capable of performing large and reversible deformation in response to an external stimulus are an important class of soft actuators. However, their manufacturing process typically involves a multistep approach that requires harsh conditions. For the very first time, LCEs with customized geometries that can be manufactured by a rapid one-step approach at room temperature are developed.

View Article and Find Full Text PDF

Sodium sulfate decahydrate (NaSO10HO, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a leading malignancy among women that currently lack effective targeted therapeutic agents, and the limitations of treatment have prompted the emergence of new strategies. Methuosis is a novel vacuole-presenting cell death modality that promotes tumor cell death. Hence, a series of pyrimidinediamine derivatives were designed and synthesized through evaluation of their abilities that inhibit proliferation as well as induce methuosis against TNBC cells.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) as an emerging drug discovery modality has been extensively concerned in recent years. Over 20 years development, accumulated studies have demonstrated that PROTACs show unique advantages over traditional therapy in operable target scope, efficacy, and overcoming drug resistance. However, only limited E3 ligases, the essential elements of PROTACs, have been harnessed for PROTACs design.

View Article and Find Full Text PDF

Blue-Phase Liquid Crystals (BPLCs) are considered to be excellent 3D photonic crystals and have attracted a great deal of attention due to their great potential for advanced applications in a wide range of fields including self-assembling tunable photonic crystals and fast-response displays. BPLCs exhibit promise in patterned applications due to their sub-millisecond response time, three-dimensional cubic structure, macroscopic optical isotropy and high contrast ratio. The diversity of patterned applications developed based on BPLCs has attracted much attention.

View Article and Find Full Text PDF

B-cell lymphoma 6 (BCL6) is a transcriptional repressor that regulates the differentiation of B lymphocytes and mediates the formation of germinal centers (GCs) by recruiting corepressors through the BTB domain of BCL6. Physiological processes regulated by BCL6 involve cell activation, differentiation, DNA damage, and apoptosis. BCL6 is highly expressed when the gene is mutated, leading to the malignant proliferation of cells and drives tumorigenesis.

View Article and Find Full Text PDF

Pure organic room-temperature phosphorescence (RTP) materials built upon noncovalent interactions have attracted much attention because of their high efficiency, long lifetime, and stimulus-responsive behavior. However, there are limited reports of noncovalent RTP materials because of the lack of specific design principles and clear mechanisms. Here, we report on a noncovalent material prepared via facile grinding that can emit fluorescence and RTP emission differing from their components' photoluminescent behavior.

View Article and Find Full Text PDF

Background: SHP2 is a protein tyrosine phosphatase that is extensively involved in several signaling pathways related to cancer occurrence, and thus SHP2 has been proposed as an attractive target for cancer treatment.

Methods: After a brief introduction of SHP2, we provided a short overview of the structure, function and regulation mechanism of SHP2 in cancer occurrence. Then, this perspective focused on the current therapeutic strategies targeting SHP2, including SHP2 PTP inhibitors, SHP2 allosteric inhibitors and SHP2-targeting PROTACs, and discussed the benefits and defects of these strategies.

View Article and Find Full Text PDF

Fluorescent cholesteric liquid crystal materials (FCLC) with aggregation-induced emission (AIE) properties can effectively solve the contradiction between aggregation-induced quenching (ACQ) and liquid crystal self-assembly when light-emitting materials are aggregated, and they have great application value in the fields of anti-counterfeit detection and information hiding. However, generating a visually appealing design, logo, or image in the application typically requires an intricate fabrication process, such as the use of prefabricated molds and photomasks, which greatly limits the practical application of FCLC materials. Herein is reported a new method for spatially patterned liquid crystal (LC) microdroplet arrays using drop-on-demand inkjet printing technology.

View Article and Find Full Text PDF

Cholesteric liquid crystal (ChLC) materials with broadband reflection are witnessing a significant surge in interest due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain ChLC films with a broad reflection band. This critical review systematically summarizes the optical background of the ChLCs with broadband reflection characteristics, methods to obtain broadband reflection of ChLCs, as well as the application in this area.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) are stimuli-responsive materials capable of reversible and programmable shape change in response to an environmental stimulus. Despite the highly responsive nature of these materials, the modest elastic modulus and blocking stress exhibited by these actuating materials can be limiting in some engineering applications. Here, we engineer a semicrystalline LCE, where the incorporation of semicrystallinity in a lightly cross-linked liquid crystalline network yields tough and highly responsive materials.

View Article and Find Full Text PDF

Hyperuricemia is closely related to a variety of diseases and has been listed as one of the twenty most persistent diseases in the 21st century by the United Nations. Therefore, strengthening the diagnosis of hyperuricemia has become imperative. Here, ordered inverse opal array structures (PAANs) composed of PDMS and gold nanoparticles (AuNPs) have been designed using a bottom-up self-assembly method.

View Article and Find Full Text PDF

A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity. However, the development of NIR SERS reporters has been a bottleneck impeding the preparation of ultrasensitive SERS probes. Herein, we report the design and synthesis of a series of SERS reporters in the NIR region based on 10-methylacridine (AD).

View Article and Find Full Text PDF

Liquid crystalline elastomers (LCEs) have emerged as an important class of functional materials that are suitable for a wide range of applications, such as sensors, actuators, and soft robotics. The unique properties of LCEs originate from the combination between liquid crystal and elastomeric network. The control of macroscopic liquid crystalline orientation and network structure is crucial to realizing the useful functionalities of LCEs.

View Article and Find Full Text PDF

Polymer composites are being considered for numerous thermal applications because of their inherent benefits, such as light weight, corrosion resistance, and reduced cost. In this work, the microstructural, thermal, and mechanical properties of a 3D printed polymer composite with high thermal conductivity are examined using multiple characterization techniques. Infrared spectroscopy and X-ray diffraction reveal that the composite contains a polyphenylene sulfide matrix with graphitic fillers, which is responsible for the high thermal conductivity.

View Article and Find Full Text PDF