Publications by authors named "Xiaoyang Kang"

Blue fluorescent carbon quantum dots (CDs) were synthesized by a one-step hydrothermal method using chitosan as the only raw material. This material overcomes multifunctional integration limitations in traditional dressings, achieving coordinated wound repair across all phases. During inflammation (0-3 days), CDs scavenge reactive oxygen species and suppress inflammatory factors (TNF-α↓49.

View Article and Find Full Text PDF

Evaluating cognitive load using electroencephalogram (EEG) signals is a crucial research area in the field of Brain-Computer Interfaces (BCI). However, achieving high accuracy and generalization in feature extraction and classification for cognitive load assessment remains a challenge, primarily due to the low signal-to-noise ratio of EEG signals and the inter-individual variability in EEG data. In this study, we propose a novel deep learning architecture that integrates temporal information features and functional connectivity features to enhance EEG signal analysis.

View Article and Find Full Text PDF

: oil (XSO), containing nervonic acid and unsaturated fatty acids (93%), exhibits lipid-lowering potential; yet, its mechanisms involving gut-liver crosstalk remain unclear. This study investigated XSO's anti-hyperlipidemic effects and gut microbiota interactions. : Forty-eight Sprague Dawley male rats were divided into: normal control (NC), high-fat diet (HFD), XSO prevention (XOP, 1.

View Article and Find Full Text PDF

Objective: Auditory Evoked Potentials (AEP), particularly the N100 component and the auditory steady-state response (ASSR), have been utilized in the clinical assessment of patients with Disorders of Consciousness (DOC). However, the specific utility of these measures remains debated across studies.

Methods: To clarify the roles of N100 and ASSR in evaluating auditory function and levels of consciousness in DOC patients, we recorded N100 and ASSR responses in 30 DOC patients and assessed their significance at the individual level through statistical analyses.

View Article and Find Full Text PDF

. Minimally invasive endovascular stent electrode is a currently emerging technology in neural engineering with minimal damage to the neural tissue. However, the typical stent electrode still requires resistive welding and is relatively large, limiting its application mainly on the large animal or thick vessels.

View Article and Find Full Text PDF

Background: Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics.

View Article and Find Full Text PDF

Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel methods based on deep learning demonstrate a notably prominent effect compared to traditional denoising approaches. However, those still suffer from certain limitations.

View Article and Find Full Text PDF

Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm.

View Article and Find Full Text PDF

Different movement paradigms have varying effects on stroke rehabilitation, and their mechanisms of action on the brain are not fully understood. This study aims to investigate disparities in brain network and functional connectivity of three movement paradigms (active, motor imagery, passive) on stroke recovery. EEG signals were recorded from 11 S patients (SP) and 13 healthy controls (HC) during fist clenching and opening tasks under the three paradigms.

View Article and Find Full Text PDF

The brain-computer interface (BCI) systems based on motor imagery typically rely on a large number of electrode channels to acquire information. The rational selection of electroencephalography (EEG) channel combinations is crucial for optimizing computational efficiency and enhancing practical applicability. However, evaluating all potential channel combinations individually is impractical.

View Article and Find Full Text PDF

Background: Robot-assisted microsurgery (RAMS) is gradually becoming the preferred method for some delicate surgical procedures. However, the lack of haptic feedback reduces the safety of the surgery. Surgeons are unable to feel the grasping force between surgical instruments and the patient's tissues, which can easily lead to grasping failure or tissue damage.

View Article and Find Full Text PDF

. Multi-channel electroencephalogram (EEG) technology in brain-computer interface (BCI) research offers the advantage of enhanced spatial resolution and system performance. However, this also implies that more time is needed in the data processing stage, which is not conducive to the rapid response of BCI.

View Article and Find Full Text PDF

The integration of low-dimensional nanomaterials with microscale architectures in flexible pressure sensors has garnered significant interest due to their outstanding performance in healthcare monitoring. However, achieving high sensitivity across different magnitudes of external pressure remains a critical challenge. Herein, we present a high-performance flexible pressure sensor crafted from biomimetic hibiscus flower microstructures coated with silver nanowires.

View Article and Find Full Text PDF

Steady-state visual evoked potential (SSVEP) is one of the main paradigms of brain-computer interface (BCI). However, the acquisition method of SSVEP can cause subject fatigue and discomfort, leading to the insufficiency of SSVEP databases. Inspired by generative determinantal point process (GDPP), we utilize the determinantal point process in generative adversarial network (GAN) to generate SSVEP signals.

View Article and Find Full Text PDF

Facial stimulation can produce specific event-related potential (ERP) component N170 in the fusiform gyrus region. However, the role of the fusiform gyrus region in facial preference tasks is not clear at present, and the current research of facial preference analysis based on EEG signals is mostly carried out in the scalp domain. This paper explores whether the region of the fusiform gyrus is involved in processing face preference emotions in terms of the distribution of energy over the source domain, and finds that the pars orbitalis cortex is most energetically active in the face preference task and that there are significant differences between the left and right hemispheres.

View Article and Find Full Text PDF

Background: The activation patterns and functional network characteristics between stroke survivors and healthy individuals based on resting-or task-state neuroimaging and neurophysiological techniques have been extensively explored. However, the discrepancy between stroke patients at different recovery stages remains unclear.

Objective: To investigate the changes in brain connectivity and network topology between subacute and chronic patients, and hope to provide a basis for rehabilitation strategies at different stages after stroke.

View Article and Find Full Text PDF

Wrist exoskeletons are increasingly being used in the rehabilitation of stroke and hand dysfunction because of its ability to assist patients in high intensity, repetitive, targeted and interactive rehabilitation training. However, the existing wrist exoskeletons cannot effectively replace the work of therapist and improve hand function, mainly because the existing exoskeletons cannot assist patients to perform natural hand movement covering the entire physiological motor space (PMS). Here, we present a bioelectronic controlled hybrid serial-parallel wrist exoskeleton HrWr-ExoSkeleton (HrWE) which is based on the PMS design guidance, the gear set can carry out forearm pronation/supination (P/S) and the 2-DoF parallel configuration fixed on the gear set can carry out wrist flexion/extension (F/E) and radial/ulnar deviation (R/U).

View Article and Find Full Text PDF

A brain-computer interface (BCI) system and virtual reality (VR) are integrated as a more interactive hybrid system (BCI-VR) that allows the user to manipulate the car. A virtual scene in the VR system that is the same as the physical environment is built, and the object's movement can be observed in the VR scene. The four-class three-dimensional (3D) paradigm is designed and moves synchronously in virtual reality.

View Article and Find Full Text PDF

Background: Most epilepsy research is based on interictal or ictal functional connectivity. However, prolonged electrode implantation may affect patients' health and the accuracy of epileptic zone identification. Brief resting-state SEEG recordings reduce the observation of epileptic discharges by reducing electrode implantation and other seizure-inducing interventions.

View Article and Find Full Text PDF

Heavy metal contamination in soils seriously threatens human health and aggravates the global pollution burden. In this study, we investigated the risk of heavy metal contamination in soils at a Zn-Pb mineral processing plant in Longnan, China, and the effects of different heavy metal contamination levels on diverse microbial communities. Statistical analysis showed that, except for Ni, the average content of all detected metals (Zn, Pb, As, Cu, Cd, Hg) in the soil was higher than the background value of soil in the study area, which was most seriously contaminated with Pb and As.

View Article and Find Full Text PDF

The brain-computer interface (BCI) system based on sensorimotor rhythm can convert the human spirit into instructions for machine control, and it is a new human-computer interaction system with broad applications. However, the spatial resolution of scalp electroencephalogram (EEG) is limited due to the presence of volume conduction effects. Therefore, it is very meaningful to explore intracranial activities in a noninvasive way and improve the spatial resolution of EEG.

View Article and Find Full Text PDF

PDMS (polydimethylsiloxane) is an important soft biocompatible material, which has various applications such as an implantable neural interface, a microfluidic chip, a wearable brain-computer interface, etc. However, the selective removal of the PDMS encapsulation layer is still a big challenge due to its chemical inertness and soft mechanical properties. Here, we use an excimer laser as a cold micro-machining tool for the precise removal of the PDMS encapsulation layer which can expose the electrode sites in an implantable neural interface.

View Article and Find Full Text PDF

Event-related potentials (ERP) are brain-evoked potentials that reflect the neural activity of the brain. However, it is difficult to isolate the ERP components of our interest because single-trial EEG is disturbed by other signals, and the average ERP analysis in turn loses single-trial information. In this paper, we used electrophysiological source imaging (ESI) to analyze the N170 component of single-trial EEG triggered by face stimulation.

View Article and Find Full Text PDF

Brain-computer interface (BCI) system based on sensorimotor rhythm (SMR) is a more natural brain-computer interaction system. In this paper, we propose a new multi-task motor imagery EEG (MI-EEG) classification framework. Unlike traditional EEG decoding algorithms, we perform the decoding task in the source domain rather than the sensor domain.

View Article and Find Full Text PDF

Parylene is used as encapsulating material for medical devices due to its excellent biocompatibility and insulativity. Its performance as the insulating polymer of implantable neural interfaces has been studied in electrolyte solutions and in vivo. Biological tissue in vitro, as a potential environment for characterization and application, is convenient to access in the fabrication lab of polymer and neural electrodes, but there has been little study investigating the behaviors of Parylene in the tissue in vitro.

View Article and Find Full Text PDF