Spectrochim Acta A Mol Biomol Spectrosc
August 2025
To achieve non-invasive early diagnosis and severity monitoring of periodontal disease, this study employed silver nanoparticles as a surface-enhanced Raman Scattering (SERS) substrate for the detection and analysis of salivary SERS spectra from a control group (periodontal health group) and groups with periodontal disease of varying severities (including gingivitis, as well as mild, moderate, and severe periodontitis). The results demonstrated significant differences in salivary SERS spectra between the control group and the gingivitis group, between the control group and the mild periodontitis group, and between the control group and groups with periodontal disease of different severities. Subsequently, based on the dual screening criteria of Variable Importance in Projection (VIP) ≥ 1 and P < 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2026
Melamine contamination from illegal additives, packaging contaminants, and pesticide residues threatens dairy product safety, demanding rapid detection. Traditional methods such as chromatography or mass spectrometry are precise but lack field applicability due to complexity, time consumption, and cost. Surface-enhanced Raman spectroscopy (SERS) is a promising alternative for sensitive, rapid, and label-free analysis.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2025
Early detection of uterine diseases is critically important for women's reproductive health. Here, we propose a novel and robust serum-based SERS analysis platform that integrates machine learning algorithms. This is the first application of it in the diagnosis and classification of various uterine diseases.
View Article and Find Full Text PDFOwing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.
View Article and Find Full Text PDFAnal Chim Acta
August 2024
This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation.
View Article and Find Full Text PDFJ Hazard Mater
August 2024
Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate.
View Article and Find Full Text PDFAn embedded spherical dot taper structure (EDT) based on the MZI principle is proposed in this paper, which is mainly fabricated by using two special arc discharges in the preparation process. The proposed structure involves two specialized arc discharge techniques. First, an oversaturated discharge fusion process creates a micro-arc spherical area on the fiber end face to form the first link type.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is a highly sensitive tool in the field of environmental testing. However, the detection and accurate quantification of weakly adsorbed molecules (such as heavy metal ions) remain a challenge. Herein, we combine clean SERS substrates capable of capturing heavy metal ions with convolutional neural network (CNN) algorithm models for quantitative detection of heavy metal ions in solution.
View Article and Find Full Text PDFTo simplify the experimental equipment and improve the signal-to-noise ratio (SNR) of the traditional Brillouin optical time-domain analysis (BOTDA) system, we propose a scheme using the frequency-agile technique to measure Brillouin gain and loss spectra simultaneously. The pump wave is modulated into the double-sideband frequency-agile pump pulse train (DSFA-PPT), and the continuous probe wave is up-shifted by a fixed frequency value. With the frequency-scanning of DSFA-PPT, pump pulses at the -1st-order sideband and the +1st-order sideband interact with the continuous probe wave via stimulated Brillouin scattering, respectively.
View Article and Find Full Text PDFThe efficacy of mineral medicines varies greatly between different origins. Therefore, investigating a method to quickly identify similar mineral medicines is meaningful. In this paper, a visual classification and identification model of Raman spectroscopy combined with principal component analysis (PCA) and support vector machine (SVM) algorithms was developed to rapidly classify and identify carbonate and sulfate mineral medicines.
View Article and Find Full Text PDFDrug abuse is a global social issue of concern. As the drug market expands, there is an urgent need for technological methods to rapidly detect drug abuse to meet the needs of different situations. Here, we present a strategy for the rapid identification of benzodiazepines (midazolam and diazepam) using surface-enhanced Raman scattering (SERS) combined with neural networks (CNN).
View Article and Find Full Text PDFThe surface-enhanced Raman scattering (SERS) technique with ultrahigh sensitivity has gained attention to meet the increasing demands for food safety analysis. The integration of machine learning and SERS facilitates the practical applicability of sensing devices. In this study, a machine learning-driven 3D plasmonic cavity-in-cavity (CIC) SERS platform is proposed for sensitive and quantitative detection of antibiotics.
View Article and Find Full Text PDFBrillouin dynamic grating (BDG) is an attractive storage unit for all-optical signal storage and processing. However, the processing speed of the traditional "write-read" scheme is severely limited by the inter-process interference (IPI) due to the residual BDG. Here, we propose an all-optical "write-read-erase" scheme to avoid the IPI effect, which can effectively eliminate the residual BDG through an erase pulse.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Tuning and controlling the plasmon coupling of noble metal nanoparticles are significant for enhancing their near-field and far-field responses. In this work, a novel heterogeneous plasmonic assembly with a controllable hot spot model was proposed by the conjugation of Au nanospheres (NSs) and Au@Ag core-shell nanocube (NC) films. Three hotspot configurations including point-to-point type, point-to-facet type, and facet-to-facet type were fabricated and transformed simply by adjusting the doping ratio of nanoparticles in the co-assembly film.
View Article and Find Full Text PDFBrillouin optical time-domain analysis requires a pulsed pump to obtain a distributed Brillouin gain spectrum (BGS) containing environmental information, whose width corresponds to spatial resolution (SR). We propose a rising edge demodulation (RED) algorithm acting on Brillouin information generated by a transient pump pulse (< lifetime) via a nonlinear weight matrix to enhance SR. The distributed BGS generated by using an 8-ns transient pump pulse is processed by the RED algorithm, and its SR is enhanced from 0.
View Article and Find Full Text PDFIn the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2021
Recently, the phenomenon of fentanyls overdose leading to death is emerging in an endless stream. There is an urgent requirement to quickly identify fentanyl content in body fluids for medical and judicial purposes. With this in mind, we present a paper-based SERS substrate decorated with uniform gold nanospheres treated by chloride ion for the detection of fentanyl citrate in urine and serum.
View Article and Find Full Text PDFIn this work, a dual-functional SERS platform was developed via a paper-based SERS substrate with the aid of hydrophobic polydimethylsiloxane (PDMS) for effective and reliable measurements of thiram on fruit surfaces and in juice. Specifically, the paper-based SERS substrate was fabricated by coating with a core-shell Au@Ag nanorod monolayer, and the SERS performance was optimized compared with multilayer adsorption. Moreover, a versatile SERS platform was constructed by simply pasting the paper-based substrate in reverse onto PDMS using polymethyl methacrylate (PMMA) tape.
View Article and Find Full Text PDFWine has always been a popular carrier for psychedelic drugs, with the rapid identification and quantification of psychedelic drugs in wine being the focus of regulating illegal behavior. In this study, surface-enhanced Raman spectroscopy (SERS) is used for the rapid detection of Flibanserin in liquor, beer and grape wine. First, the theoretical Raman spectrum with characteristic Flibanserin peaks was calculated and identified, and the limit of detection of 1 μg mL-1 for Flibanserin in liquor was determined.
View Article and Find Full Text PDFThis paper describes a method based on surface enhanced Raman spectroscopy (SERS) technology for rapid detection of dezocine in urine and serum. Firstly, an Ag colloid substrate was prepared and characterized. Then the Raman characteristic peaks of dezocine were assigned from both theoretical and experimental aspects.
View Article and Find Full Text PDFA portable and highly reproducible lab-on-capillary surface-enhanced Raman scattering (SERS) platform was developed using a specially designed homemade device for rapid on-site SERS measurement. In particular, this platform was composed of a capillary with a tiny orifice, which allows an effective and lossless sample extraction, resulting in high SERS performance. The capillary-based plasmonic substrate was prepared by compactly assembling Au@Ag core-shell nanorods (NRs) embedded with the 4-mercaptobenzoic acid (4-MBA) molecule as an internal standard onto the inner wall of a capillary tube.
View Article and Find Full Text PDFIn recent years, paper-based Surface-enhanced Raman spectroscopy (SERS) substrates have received extensive attention in the field of rapid analysis. However, obtaining quantitative SERS results is still challenging because of the inferior uniformity originating from the irregular morphology of the filter paper. In this work, a novel paper-fluidic SERS sensor was developed and its in-depth applications in the real-word quantitative analysis of contaminants in complex matrices were demonstrated.
View Article and Find Full Text PDFThis paper described how a high-yield, monodisperse Au nanobipyramids (Au NBs) sol was prepared by a seed-mediated method, and gold nanoparticles were assembled on the surface of a silicon wafer by self-assembly technology to obtain a solid SERS substrate. Scanning electron microscopy (SEM) showed that the average length of Au NBs was 34.31 nm, and the analysis enhancement factor (AEF) was approximately 7.
View Article and Find Full Text PDFEstazolam (EST) is a common sedative-hypnotic drug with a risk of abuse. Therefore, rapid on-site detection of EST is necessary to control the abuse of EST. In this paper, a fast, simple, and sensitive method is demonstrated for the detection of EST in both water and beverages, using surface-enhanced Raman spectroscopy (SERS) techniques.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) has gradually proved to be a powerful tool with wide applications in various fields. Here, a simple and rapid SERS method was developed for the determination of ketamine in urine based on silver aggregates as a SERS substrate. Ketamine in urine were demonstrated by the SERS technique with silver sol aggregated by a 0.
View Article and Find Full Text PDF