Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Drug abuse is a global social issue of concern. As the drug market expands, there is an urgent need for technological methods to rapidly detect drug abuse to meet the needs of different situations. Here, we present a strategy for the rapid identification of benzodiazepines (midazolam and diazepam) using surface-enhanced Raman scattering (SERS) combined with neural networks (CNN). The method uses a self-assembled silver nanoparticle paper-based SERS substrate for detection. Then, a SERS spectrum intelligent recognition model based on deep learning technology was constructed to realize the rapid and sensitive distinction between the two drugs. In this work, a total of 560 SERS spectra were collected, and the qualitative and quantitative identification of the two drugs in water and a beverage (Sprite) was realized by a trained convolutional neural network (CNN). The predicted concentrations for each scenario could reach 0.1-50 ppm (midazolam in water), 0.5-50 ppm (midazolam in water and diazepam in Sprite), and 5-150 ppm (diazepam in Sprite), with a strong coefficient of determination () larger than 0.9662. The advantage of this method is that the neural network can extract data features from the entire SERS spectrum, which makes up for information loss when manually identifying the spectrum and selecting a limited number of characteristic peaks. This work clearly clarifies that the combination of SERS and deep learning technology has become an inevitable development trend, and also demonstrates the great potential of this strategy in the practical application of SERS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2an01277d | DOI Listing |