Publications by authors named "Tinghui Xiao"

Imaging flow cytometry is a widely used technique for high-throughput, label-free single-cell analysis. However, its effectiveness is often compromised by experimental perturbations, such as random defocusing and off-axis light coupling, which degrade image quality and hinder reliable analysis. In this study, we present a robust imaging flow cytometer based on in-silico optofluidic time-stretch imaging with the assistance of optical phase.

View Article and Find Full Text PDF

Pancreatic β cell loss by cellular stress contributes to diabetes pathogenesis. Nevertheless, the fundamental mechanism of cellular stress regulation remains elusive. Here, it is found that elevated zinc transportation causes excessive cellular stress in pancreatic β cells in diabetes.

View Article and Find Full Text PDF

Optical chirality is a fundamental property of light that plays a crucial role in chiroptical spectroscopy, analytical chemistry, spin photonics, and astrobiology. However, giant optical chirality at the wavelength beyond 15 μm remains untapped, which hinders its various applications, such as ultrasensitive vibrational circular dichroism, in the mid-infrared region. Here we propose and theoretically present giant optical chirality with a, to our knowledge, record-high value of ∼330 at the wavelength beyond 15 μm in a diamond metasurface.

View Article and Find Full Text PDF

Background: The management of Garden IV femoral neck fractures presents a formidable challenge. This study aimed to assess the safety and efficacy of a novel technological approach for treating Garden IV femoral neck fractures, involving intracapsular decompression and the utilization of supported hollow screws.

Methods: Between October 2018 and October 2021, a cohort of 46 patients, comprising 25 males and 21 females, was admitted for Garden IV femoral neck fractures.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for label-free chemical analysis. The emergence of nonmetallic materials as SERS substrates, offering chemical signal enhancements, presents an exciting direction for achieving reproducible and biocompatible SERS, a challenge with traditional metallic substrates. Despite the potential, the realm of nonmetallic SERS substrates, particularly nanoparticles, remains largely untapped.

View Article and Find Full Text PDF

The reconfigurable chiroptical effect is highly desirable for spin photonics, chiral spectroscopy, and photocatalysis due to its merits for dynamic and broadband applications. The coupling of an epsilon-near-zero (ENZ) mode to a chiral plasmon is expected to enable active and effective manipulation of the chiroptical effect but remains unexplored. Here we, for the first time to our knowledge, propose and demonstrate the strong coupling of an ENZ mode to a chiral plasmon by using a hybrid system composed of two identical vertically placed gold nanorods and an in-between ENZ film.

View Article and Find Full Text PDF

Diamond is a supreme material for mid-infrared (MIR) integrated photonics as it has a transparency window up to 20 µm that covers the entire fingerprint region. However, its relatively low refractive index poses a challenge in designing an MIR diamond functional device with both small footprint and high transmission efficiency. Here we propose and demonstrate the inverse design of an MIR diamond waveguide beam splitter operating at the wavelength of 15 µm with a small footprint of ∼15 µm × ∼15 µm and a total transmission efficiency above 95%.

View Article and Find Full Text PDF
Article Synopsis
  • A 44-year-old man suffered a foot injury resulting in a 5-cm defect in the first metatarsal bone and subsequent bone infection.
  • The most effective treatment for such large metatarsal defects combined with osteomyelitis is osteotomy, but there are limited reports on this procedure.
  • In this case, the surgery was successful, as the infection was managed, bone length was restored, and the patient regained the ability to bear weight effectively.
View Article and Find Full Text PDF

Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna-Matthews-Olson (FMO) complex and the vacuum state of an optical cavity.

View Article and Find Full Text PDF
Article Synopsis
  • Surface-enhanced Raman spectroscopy (SERS) is a powerful method for analyzing molecules, but traditional metallic substrates have issues with consistency and compatibility, especially in biological contexts.
  • Recent advancements in metal-free SERS substrates, particularly using carbon-based materials, show promise due to their improved reproducibility and compatibility with biological molecules.
  • The study investigates various carbon structures (like fullerenes, nanotubes, and graphene) and their altered forms, using theoretical methods to understand how they enhance SERS through chemical mechanisms, paving the way for better carbon-based substrates in the future.
View Article and Find Full Text PDF

In-silico clearing enables deep optical imaging of biological samples by correcting image blur caused by scattering and aberration. This breakthrough method offers researchers unprecedented insights into three-dimensional biological systems, with enormous potential for advancing biology and medicine to better understand living organisms and human health.

View Article and Find Full Text PDF

Fiber-optic sensors are an indispensable element of modern sensing technologies by virtue of their low cost, excellent electromagnetic immunity, and remote sensing capability. Optical Vernier effect is widely used to enhance sensitivity of fiber-optic sensors but requires bulky and complex cascaded interferometers. Here we propose and experimentally demonstrate an ultracompact (∼2 mm by ∼2 mm) Vernier-effect-improved sensor by only using a single microfiber-knot resonator.

View Article and Find Full Text PDF

Acute leukemia (AL) is one of the top life-threatening diseases. Accurate typing of AL can significantly improve its prognosis. However, conventional methods for AL typing often require cell staining, which is time-consuming and labor-intensive.

View Article and Find Full Text PDF

Microvascular thrombosis is a typical symptom of COVID-19 and shows similarities to thrombosis. Using a microfluidic imaging flow cytometer, we measured the blood of 181 COVID-19 samples and 101 non-COVID-19 thrombosis samples, resulting in a total of 6.3 million bright-field images.

View Article and Find Full Text PDF

The ability to perform sensitive, real-time, , multiplex chemical analysis is indispensable for diverse applications such as human health monitoring, food safety testing, forensic analysis, environmental sensing, and homeland security. Surface-enhanced Raman spectroscopy (SERS) is an effective tool to offer the ability by virtue of its high sensitivity and rapid label-free signal detection as well as the availability of portable Raman spectrometers. Unfortunately, the practical utility of SERS is limited because it generally requires sample collection and preparation, namely, collecting a sample from an object of interest and placing the sample on top of a SERS substrate to perform a SERS measurement.

View Article and Find Full Text PDF

Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis.

View Article and Find Full Text PDF

There is a global concern about the safety of COVID-19 vaccines associated with platelet function. However, their long-term effects on overall platelet activity remain poorly understood. Here we address this problem by image-based single-cell profiling and temporal monitoring of circulating platelet aggregates in the blood of healthy human subjects, before and after they received multiple Pfizer-BioNTech (BNT162b2) vaccine doses over a time span of nearly 1 year.

View Article and Find Full Text PDF

Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion.

View Article and Find Full Text PDF

Graphene oxide (GO) and reduced GO possess robust mechanical, electrical and chemical properties. Their nanocomposites have been extensively explored for applications in diverse fields. However, due to the high flexibility and weak interlayer interactions of GO nanosheets, the flexural mechanical properties of GO-based composites, especially in bulk materials, are largely constrained, which hinders their performance in practical applications.

View Article and Find Full Text PDF

A characteristic clinical feature of COVID-19 is the frequent incidence of microvascular thrombosis. In fact, COVID-19 autopsy reports have shown widespread thrombotic microangiopathy characterized by extensive diffuse microthrombi within peripheral capillaries and arterioles in lungs, hearts, and other organs, resulting in multiorgan failure. However, the underlying process of COVID-19-associated microvascular thrombosis remains elusive due to the lack of tools to statistically examine platelet aggregation (i.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is characterized by the malfunction of pancreatic β cells. Susceptibility and pathogenesis of T2D can be affected by multiple factors, including sex differences. However, the mechanisms underlying sex differences in T2D susceptibility and pathogenesis remain unclear.

View Article and Find Full Text PDF

Sepsis is a life-threatening condition caused by the extreme release of inflammatory mediators into the blood in response to infection (e.g., bacterial infection, COVID-19), resulting in the dysfunction of multiple organs.

View Article and Find Full Text PDF

Raman optical activity (ROA) is effective for studying the conformational structure and behavior of chiral molecules in aqueous solutions and is advantageous over X-ray crystallography and nuclear magnetic resonance spectroscopy in sample preparation and cost performance. However, ROA signals are inherently minuscule; 3-5 orders of magnitude weaker than spontaneous Raman scattering due to the weak chiral light-matter interaction. Localized surface plasmon resonance on metallic nanoparticles has been employed to enhance ROA signals, but suffers from detrimental spectral artifacts due to its photothermal heat generation and inability to efficiently transfer and enhance optical chirality from the far field to the near field.

View Article and Find Full Text PDF

Technological advances in image-based platelet analysis or platelet morphometry are critical for a better understanding of the structure and function of platelets in biological research as well as for the development of better clinical strategies in medical practice. Recently, the advent of high-throughput optical imaging and deep learning has boosted platelet morphometry to the next level by providing a new set of capabilities beyond what is achievable with traditional platelet morphometry, shedding light on the unexplored domain of platelet analysis. This Opinion article introduces emerging opportunities in 'intelligent' platelet morphometry, which are expected to pave the way for a new class of diagnostics, pharmacometrics, and therapeutics.

View Article and Find Full Text PDF

Aims: This study was to investigate the effect of TUG1 on apoptosis and ECM degradation of human degenerative intervertebral disc nucleus pulposus cells (NPCs) and its mechanism.

Methods: Human degenerative intervertebral disc NP tissues were obtained from 10 patients with lumbar disc herniation (LDH) who underwent lumbar spine surgery (IDD group), normal intervertebral disc NP tissues were obtained from 10 patients with lumbar vertebrae fractures (LVF group).

Results: The expression of TUG1 and HMGB1 protein in human degenerative disc NP tissues and NPCs was significantly increased, while the level of miR-26a was significantly decreased.

View Article and Find Full Text PDF