98%
921
2 minutes
20
Pancreatic β cell loss by cellular stress contributes to diabetes pathogenesis. Nevertheless, the fundamental mechanism of cellular stress regulation remains elusive. Here, it is found that elevated zinc transportation causes excessive cellular stress in pancreatic β cells in diabetes. With gene-edited human embryonic stem cell-derived β cells (SC-β cells) and human primary islets, the results reveal that elevated zinc transportation initiates the integrated stress response (ISR), and ultimately leads to β cell death. By contrary, genetic abolishment of zinc transportation shields β cells from exacerbated endoplasmic reticulum stress (ER stress) and concurrent ISR. To target excessive zinc transportation with a chemical inhibitor, an isogenic SC-β cells based drug-screening platform is established. Surprisingly, independent of its traditional role as protein synthesis inhibitor at a high-dose (10 µm), low-dose (25 nm) anisomycin significantly inhibits zinc transportation and effectively prevents β cell loss. Remarkably, in vivo administration of anisomycin in mice demonstrates protective effects on β cells and prevents type 2 diabetes induced by high-fat diet. Overall, elevated zinc transportation is identified as a crucial driver of β cell loss and low-dose anisomycin as a potential therapeutic molecule for diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120731 | PMC |
http://dx.doi.org/10.1002/advs.202413161 | DOI Listing |
Chem Commun (Camb)
September 2025
Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
In this work, a series of potassium ion (K) pre-intercalated sodium hydrogen vanadates (K-HNVO) are prepared through a facile route. The introduction of K modulates the microstructure of the pristine sodium metavanadate and increases the interlayer spacing, thereby resulting in improved charge transport kinetics. Moreover, the pillaring effect of K enhances the structural stability of the pristine material.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.
Hepatitis C virus (HCV) exhibits a narrow species tropism, causing robust infections only in humans and experimentally inoculated chimpanzees. While many host factors and restriction factors are known, many more likely remain unknown, which has limited the development of mouse or other small animal models for HCV. One putative restriction factor, the black flying fox orthologue of receptor transporter protein 4 (RTP4), was previously shown to potently inhibit viral genome replication of several ER-replicating RNA viruses.
View Article and Find Full Text PDFLangmuir
September 2025
College of Applied Science and Technology, Hainan University, Haikou 570228, China.
This study systematically investigates the role of nitrogen annealing in enhancing the structural and electrochemical properties of ZnNiO/NF composite anode materials synthesized via hydrothermal methods. By comparing air-annealed and nitrogen-annealed (400 and 600 °C) samples, it is demonstrated that nitrogen annealing at 400 °C induces the densely stacked nanosheet morphology with optimized lattice regularity, which can significantly improve the charge transport kinetics and the interfacial stability. Electrochemical evaluations reveal an outstanding initial discharge capacity of 1873.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDF