5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate, and several well-characterized amino acid substitutions in EPSPS are known to confer glyphosate resistance. Here, we introduced the P106S substitution into wheat via prime editing, resulting in resistance to the field-recommended dosage of glyphosate. Either homozygous or heterozygous P106S in a single homeolog was sufficient to confer resistance, with tolerance levels of 461 g a.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2025
The incorporation of deformable network junctions into polymer networks is a new fundamental concept in the design of smart topology-switching materials. However, it is still a nascent field that needs to be amplified by developing new deformable junctions and creating materials with practical properties. Here, we construct a new topology-switching polymer network (TPN) by using conformational transformable peptide coiled-coils as deformable network junctions.
View Article and Find Full Text PDFAfter myocardial infarction (MI), the affected area of the myocardium falls into a state of ischemia and hypoxia, and subsequently, cardiomyocytes undergo a series of pathological changes and eventually transform into scar tissue. Therefore, restoring blood perfusion and reducing reactive oxygen species (ROS) are essential to promote the repair process of damaged myocardium. Here, the MMP12 (YWDAW) peptide which has a good antioxidant effect in deep-sea fish muscle, and the KRX (MRPYDANKR) peptide which shows a pro-angiogenesis effect from mammalian endothelial genes, were utilized collaboratively and loaded into an injectable GelMA hydrogel to achieve minimally invasive implantation and long-term retention at the MI site.
View Article and Find Full Text PDFWhile frequently used herbicides display limited efficacy against herbicide-resistant weeds, it becomes imperative to explore novel herbicides that ensure both effective weed management and environmental safety. Though 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitory herbicides like mesotrione are prevalent in maize weed management, their integration into rice production is hindered due to the inherent sensitivity of rice HPPD (). In this study, a mutant allele of featuring six amino acid substitutions, termed -6M, maintains enzymatic activity in 200 μm mesotrione while the wild type can only withstand 1 μm.
View Article and Find Full Text PDFPeptide-based nanofibers are promising materials for many essential applications and can be generalized into two categories, self-assembling peptide nanofibers (SAPNs) and poly(amino acid) nanofibers (PAANs). Non-covalent SAPNs are sequence-controllable, but poorly stable and not suitable for post-modification. While covalent PAANs are post-modifiable, however, their sequences are either monotonic or undefined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Antimicrobial peptides (AMPs) are expected to be an alternative promising solution to the global public health problem of antibiotic resistance due to their unique antimicrobial mechanism. However, extensive efforts are still needed to improve the shortcomings of traditional AMPs, such as rapid proteolysis, hemolysis, slow response, toxicity, etc., by exploring AMP-based new antimicrobial strategies.
View Article and Find Full Text PDFSalt stress significantly impedes plant growth and the crop yield. This study utilized transcriptome assembly and ribosome profiling to explore mRNA translation's role in rice salt tolerance. We identified unrecognized translated open reading frames (ORFs), including 42 upstream transcripts and 86 unannotated transcripts.
View Article and Find Full Text PDFIntroduction: The heterocyclic compound 4-hydroxy-(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOL) has a protective effect on neurological function in brain tissues damaged by ischemia and hypoxia. This study explored the effects of TEMPOL pretreatment on postoperative cognitive function in aged rats under sevoflurane anesthesia, focusing on inflammatory response and oxidative stress.
Methods: Sixty male rats were divided into normal control (C), sevoflurane anesthesia (S), TEMPOL pretreatment (T), and sevoflurane anesthesia + TEMPOL pretreatment (ST) groups (15 per group).
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton.
View Article and Find Full Text PDFSome plant microRNA (miRNA) families contain multiple members generating identical or highly similar mature miRNA variants. Mechanisms underlying the expansion of miRNA families remain elusive, although tandem and/or segmental duplications have been proposed. In this study of two tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, and their extant diploid progenitors, Gossypium arboreum and Gossypium raimondii, we investigated the gain and loss of members of the miR482/2118 superfamily, which modulates the expression of nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes.
View Article and Find Full Text PDFTomato yellow leaf curl virus (TYLCV) and its related begomoviruses cause fast-spreading diseases in tomato worldwide. How this virus induces diseases remains largely unclear. Here we report a noncoding RNA-mediated model to elucidate the molecular mechanisms of TYLCV-tomato interaction and disease development.
View Article and Find Full Text PDFBackground: MicroRNA-647 (miR-647) has been reported to repress cell tumorigenic phenotype, while the function of miR-647 in non-small cell lung cancer was obscure.
Methods: The effect of miR-647 and TRAF2 on A549 and H1299 cells was explored through Methyl thiazolyl tetrazolium (MTT) assay, colony formation and cell cycle assays. Luciferase reporter assays, reverse transcription quantitative PCR (RT-qPCR) and Western blot assay were carried out to determine that TRAF2 is directly regulated by miR-647.
Background: Long Noncoding-RNAs (LncRNAs) are known to be involved in some biological processes, but their roles in plant-virus interactions remain largely unexplored. While circular RNAs (circRNAs) have been studied in animals, there has yet to be extensive research on them in a plant system, especially in tomato-tomato yellow leaf curl virus (TYLCV) interaction.
Results: In this study, RNA transcripts from the susceptible tomato line JS-CT-9210 either infected with TYLCV or untreated, were sequenced in a pair-end strand-specific manner using ribo-zero rRNA removal library method.
Verticillium wilt is a soil-borne disease that can cause devastating losses in cotton production. Because there is no effective chemical means to combat the disease, the only effective way to control Verticillium wilt is through genetic improvement. Therefore, the identification of additional disease-resistance genes will benefit efforts toward the genetic improvement of cotton resistance to Verticillium wilt.
View Article and Find Full Text PDFFront Plant Sci
December 2017
Lysin-motif (LysM) receptor kinases (LYKs) play essential roles in recognition of chitin and activation of defense responses against pathogenic fungi in the model plants and rice. The function of LYKs in non-model plants, however, remains elusive. In the present work, we found that the transcription of two LYK-encoding genes from cotton, and , was induced after infection.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2016
The tomato Ve1 gene and several Ve1 homologues are involved in the resistance to Verticillium dahliae. Here, we report on another Ve homologous gene, Gbvdr3, from a Verticillium wilt-resistant cotton cultivar, Gossypium barbadense Hai7124, which has a 3207-bp region that encodes a predicted receptor-like protein. Transient expression analyses indicated that Gbvdr3 is localized in the plasma membrane, and virus-induced gene silencing of Gbvdr3 compromised the resistance of Hai7124 cotton to a defoliating strain of V.
View Article and Find Full Text PDFRecently, a large number of long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes in animals and plants. However, how lncRNAs function during plant DNA virus infection is largely unknown. We performed strand-specific paired-end RNA sequencing of tomato samples infected with Tomato yellow leaf curl virus (TYLCV) with three biological replicates.
View Article and Find Full Text PDFVerticillium wilt is a soil borne disease that can cause devastating losses to the production of many economically important crops. A Ve1 homologous gene responding to Verticillium dahliae infection was identified in Vitis vinifera cv. "HeiFeng" by semi-quantitative reverse transcription polymerase chain reaction and was designated as VvVe.
View Article and Find Full Text PDFVerticillium dahliae is a causative fungal pathogen and only a few genes have been identified that exhibit critical roles in disease resistance and few has shown positive effects on the resistance to Verticillium wilt in transgenic cotton. We cloned a receptor-like kinase gene (GbRLK) induced by Verticillium dahliae (VD) in the disease-resistant cotton Gossypium barbadense cv. Hai7124.
View Article and Find Full Text PDFPlant Cell Physiol
May 2015
Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco.
View Article and Find Full Text PDFBackground: The basic helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that can bind to specific DNA target sites. They have been well characterized in model plants such as Arabidopsis and rice and have been shown to be important regulatory components in many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in tomatoes.
View Article and Find Full Text PDFPlant Cell Physiol
March 2015
Members of the P4 subfamily of P-type ATPases are implicated in generating lipid asymmetry between the two lipid leaflets of the plasma membrane in Arabidopsis and are important for resistance to low temperatures, but the function of P4-ATPases in cotton remains unclear. In this study, we found using quantitative reverse transcription-PCR analysis that the expression of the P4-ATPase gene GbPATP in cotton was induced at low temperatures. In addition, GbPATP-silenced cotton plants were more sensitive to low temperatures and exhibited greater malondialdehyde (MDA) content and lower catalase (CAT) activity than the control plants.
View Article and Find Full Text PDFPlant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis.
View Article and Find Full Text PDFTomato yellow leaf curl virus (TYLCV) threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R) and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S).
View Article and Find Full Text PDF