Publications by authors named "Ruopeng Feng"

β-hemoglobinopathies caused by mutations in adult-expressed HBB can be treated by re-activating the adjacent paralogous genes HBG1 and HBG2 (HBG), which are normally silenced perinatally. Although HBG expression is induced by global demethylating drugs, their mechanism is poorly understood, and toxicity limits their use. We identify the DNMT1-associated maintenance methylation protein UHRF1 as a mediator of HBG repression through a CRISPR/Cas9 screen.

View Article and Find Full Text PDF

Background: CTCF is considered as the most essential transcription factor regulating chromatin architecture and gene expression. However, genome-wide impact of CTCF on erythropoiesis has not been extensively investigated.

Results: Using a state-of-the-art human erythroid progenitor cell model (HUDEP-2 and HEL cell lines), we systematically investigate the effects of acute CTCF loss by an auxin-inducible degron system on transcriptional programs, chromatin accessibility, CTCF genome occupancy, and genome architecture.

View Article and Find Full Text PDF

Genetic depletion of the transcriptional repressor BCL11A in red blood cell precursors alleviates β-hemoglobinopathies by inducing the fetal γ-globin genes. However, additional erythroid genes are regulated by BCL11A and the effects of its deficiency on erythropoiesis are insufficiently described. We discovered that Cas9 disruption of the BCL11A intron 2 erythroid enhancer in CD34+ hematopoietic stem and progenitor cells using a clinically approved strategy caused impaired expansion and apoptosis of erythroid precursors in vitro and reduced repopulation of the erythroid compartment after xenotransplantation into immunodeficient mice.

View Article and Find Full Text PDF

ETS variant 6 (ETV6) encodes a transcriptional repressor expressed in hematopoietic stem and progenitor cells (HSPCs), where it is required for adult hematopoiesis. Heterozygous pathogenic germline ETV6 variants are associated with thrombocytopenia 5 (T5), a poorly understood genetic condition resulting in thrombocytopenia and predisposition to hematologic malignancies. To elucidate how germline ETV6 variants affect HSPCs and contribute to disease, we generated a mouse model harboring an Etv6R355X loss-of-function variant, equivalent to the T5-associated variant ETV6R359X.

View Article and Find Full Text PDF

Inducing fetal hemoglobin (HbF) in red blood cells can alleviate β-thalassemia and sickle cell disease. We compared five strategies in CD34 hematopoietic stem and progenitor cells, using either Cas9 nuclease or adenine base editors. The most potent modification was adenine base editor generation of γ-globin -175A>G.

View Article and Find Full Text PDF

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to β-globin, which results in fetal haemoglobin (HbF, αγ) being gradually replaced by adult haemoglobin (HbA, αβ). This process has motivated the development of innovative approaches to treat sickle cell disease and β-thalassaemia by increasing HbF levels in postnatal RBCs. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression.

View Article and Find Full Text PDF

The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family-NFIA and NFIX-as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared with fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants.

View Article and Find Full Text PDF

The benign condition hereditary persistence of fetal hemoglobin (HPFH) is known to ameliorate symptoms of co-inherited β-hemoglobinopathies, such as sickle cell disease and β-thalassemia. The condition is sometimes associated with point mutations in the fetal globin promoters that disrupt the binding of the repressors BCL11A or ZBTB7A/LRF, which have been extensively studied. HPFH is also associated with a range of deletions within the β-globin locus that all reside downstream of the fetal HBG2 gene.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) cells rely on phospho-signaling pathways to gain unlimited proliferation potential. Here, we use domain-focused CRISPR screening and identify the nuclear phosphatase SCP4 as a dependency in AML, yet this enzyme is dispensable in normal hematopoietic progenitor cells. Using CRISPR exon scanning and gene complementation assays, we show that the catalytic function of SCP4 is essential in AML.

View Article and Find Full Text PDF

Hereditary persistence of fetal hemoglobin (HPFH) ameliorates β-hemoglobinopathies by inhibiting the developmental switch from γ-globin (HBG1/HBG2) to β-globin (HBB) gene expression. Some forms of HPFH are associated with γ-globin promoter variants that either disrupt binding motifs for transcriptional repressors or create new motifs for transcriptional activators. How these variants sustain γ-globin gene expression postnatally remains undefined.

View Article and Find Full Text PDF

Pinpointing functional noncoding DNA sequences and defining their contributions to health-related traits is a major challenge for modern genetics. We developed a high-throughput framework to map noncoding DNA functions with single-nucleotide resolution in four loci that control erythroid fetal hemoglobin (HbF) expression, a genetically determined trait that modifies sickle cell disease (SCD) phenotypes. Specifically, we used the adenine base editor ABEmax to introduce 10,156 separate A•T to G•C conversions in 307 predicted regulatory elements and quantified the effects on erythroid HbF expression.

View Article and Find Full Text PDF

While constitutive CCCTC-binding factor (CTCF)-binding sites are needed to maintain relatively invariant chromatin structures, such as topologically associating domains, the precise roles of CTCF to control cell-type-specific transcriptional regulation remain poorly explored. We examined CTCF occupancy in different types of primary blood cells derived from the same donor to elucidate a new role for CTCF in gene regulation during blood cell development. We identified dynamic, cell-type-specific binding sites for CTCF that colocalize with lineage-specific transcription factors.

View Article and Find Full Text PDF

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome.

View Article and Find Full Text PDF

The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors.

View Article and Find Full Text PDF

Numerous pieces of evidence support the complex, 3D spatial organization of the genome dictates gene expression. CTCF is essential to define topologically associated domain boundaries and to facilitate the formation of insulated chromatin loop structures. To understand CTCF's direct role in global transcriptional regulation, we integrated the miniAID-mClover3 cassette to the endogenous CTCF locus in a human pediatric B-ALL cell line, SEM, and an immortal erythroid precursor cell line, HUDEP-2, to allow for acute depletion of CTCF protein by the auxin-inducible degron system.

View Article and Find Full Text PDF

Unlabelled: Fluorogenic labeling is a potential technique in biology that allows for direct detection and tracking of cells undergoing various biological processes. Compared to traditional genetic modification approaches, labeling cells with nanoparticles has advantages, especially for the additional safety they provide by avoiding genomic integration. However, it remains a challenge to determine whether nanoparticles interfere with cell traits and provide long-lasting signals in living cells.

View Article and Find Full Text PDF

Recent advances in self-organizing, 3-dimensional tissue cultures of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provided an in vitro model that recapitulates many aspects of the in vivo developmental steps. Using Rax-GFP-expressing ESCs, newly generated Six3 iPSCs, and conditional null Six3;Rax-Cre ESCs, we identified Six3 repression of R-spondin 2 (Rspo2) as a required step during optic vesicle morphogenesis and neuroretina differentiation. We validated these results in vivo by showing that transient ectopic expression of Rspo2 in the anterior neural plate of transgenic mouse embryos was sufficient to inhibit neuroretina differentiation.

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells have been generated from human somatic cells by ectopic expression of four Yamanaka factors. Here, we report that Survivin, an apoptosis inhibitor, can enhance iPS cells generation from human neural progenitor cells (NPCs) together with one factor OCT4 (1F-OCT4-Survivin). Compared with 1F-OCT4, Survivin accelerates the process of reprogramming from human NPCs.

View Article and Find Full Text PDF

Sox2 is well known for its functions in embryonic stem (ES) cell pluripotency, maintenance, and self-renewal, and it is an essential factor in generating inducible pluripotent stem (iPS) cells. It also plays an important role in development and adult tissue homeostasis of different tissues, especially the central nervous system. Increasing evidence has shown that aging is a stemness-related process in which Sox2 is also implicated as a key player, especially in the neural system.

View Article and Find Full Text PDF

Background: Type 2 diabetes is caused by interactions between genetic and environmental factors. Our previous studies reported that paired box 6 mutation heterozygosity (Pax6(m/+)) led to defective proinsulin processing and subsequent abnormal glucose metabolism in mice at 6  months of age. However, high-fat diet exposure could be an important incentive for diabetes development.

View Article and Find Full Text PDF

PAX6-null mice exhibit defects in multiple organs leading to neonatal lethality, but the mechanism by which this occurs has not yet fully elucidated. In this study, we generated induced pluripotent stem cells (iPSCs) from Pax6-mutant mice and investigated the effect of PAX6 on cell fate during embryoid body (EB) formation. We found that PAX6 promotes cell migration by directly downregulating miR-124, which is important for the fate transition of migratory cells during gastrulation of embryonic stem (ES) cells.

View Article and Find Full Text PDF

Human embryonic germ cells (hEGCs) are a valuable and underutilized source of pluripotent stem cells. Unlike embryonic stem cells, which have been extensively studied, little is known about the factors that regulate hEGC derivation and maintenance. This study demonstrates for the first time a central role for selective activation of PDGFR signaling in the derivation and maintenance of pluripotency in hEGCs.

View Article and Find Full Text PDF

Lung fibrosis is characterized by vascular leakage and myofibroblast recruitment, and both phenomena are mediated by lysophosphatidic acid (LPA) via its type-1 receptor (LPA1). Following lung damage, the accumulated myofibroblasts activate and secrete excessive extracellular matrix (ECM), and form fibrotic foci. Studies have shown that bone marrow-derived cells are an important source of myofibroblasts in the fibrotic organ.

View Article and Find Full Text PDF

The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is essential for the regulation of self-renewal and homoeostasis of NSCs (neural stem cells) during brain development. However, the downstream targets of Sox2 and its underlying molecular mechanism are largely unknown. In the present study, we found that Sox2 directly up-regulates the expression of survivin, which inhibits the mitochondria-dependent apoptotic pathway in NSCs.

View Article and Find Full Text PDF