Publications by authors named "Ruishuang Ma"

Background: The coronavirus disease of 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2, has affected millions of people worldwide. The omicron variant is currently the predominant strain circulating worldwide. Serum apolipoprotein A1 (ApoA1) is linked to endothelial cell injury and serves as a valuable biomarker for monitoring the progression of inflammation in infected individuals.

View Article and Find Full Text PDF

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, results from a loss of fragile X mental retardation protein (FMRP), an RNA-binding protein whose deficiency impacts many targeted mRNA and brain functions. However, how these FMRP targets contribute to the pathogenesis of FXS is not fully understood, and effective treatment is lacking. Here, we identify signal transducer and activator of transcription 3 (STAT3) as a target of FMRP in adult hippocampal neural stem cells (NSCs).

View Article and Find Full Text PDF

The gut microbiota (GM), often regarded as a vital 'functional organ,' plays a crucial role in human physiological processes. GM is involved in substance metabolism, especially the biotransformation of pharmaceuticals. It modulates drug pharmacological activity and bioavailability through various metabolic pathways.

View Article and Find Full Text PDF

Background: Caveolins (CAV), a family of integral membrane proteins, are involved in regulating stem cell fate, which are critical for tissue repair and regeneration. Drawing from scientometric studies and comprehensive research, this review investigates the mechanisms by which CAV regulates stem cell fate can improve the efficiency and accuracy of stem cell therapy in treating chronic degenerative diseases (CDD). For instance, CAV1 inhibits neuronal differentiation of neural stem/progenitor cells (NSCs/NPCs) by downregulating VEGF, p44/42MAPK phosphorylation and NeuroD1 signaling pathway following ischemic stroke, while CAV3 interacts with MG53 to enhance the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) in diabetic wound healing by activating the eNOS/NO signaling pathway.

View Article and Find Full Text PDF

Background: Tuberous sclerosis complex is a genetic disorder caused by mutations in the TSC1 or TSC2 genes, affecting multiple systems. These genes produce proteins that regulate mTORC1 activity, essential for cell function and metabolism. While mTOR inhibitors have advanced treatment, maintaining long-term therapeutic success is still challenging.

View Article and Find Full Text PDF

Background And Aims: Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression.

View Article and Find Full Text PDF

The SARS-CoV-2 virus is responsible for the human disease known as COVID-19. This virus is capable of generating a spectrum of infections ranging from moderate to severe. Serum apolipoprotein E (ApoE) inhibits inflammation by preserving immune regulatory function.

View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) represents the initial tumor suppressor gene identified to possess phosphatase activity, governing various cellular processes including cell cycle regulation, migration, metabolic pathways, autophagy, oxidative stress response, and cellular senescence. Current evidence suggests that PTEN is critical for stem cell maintenance, self-renewal, migration, lineage commitment, and differentiation. Based on the latest available evidence, we provide a comprehensive overview of the mechanisms by which PTEN regulates activities of different stem cell populations and influences neurological disorders, encompassing autism, stroke, spinal cord injury, traumatic brain injury, Alzheimer's disease and Parkinson's disease.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive form of breast cancer, occurring more frequently in younger patients and characterized by high heterogeneity, early distant metastases and poor prognosis. Multiple treatment options have failed to achieve the expected therapeutic effects due to the lack of clear molecular targets. Based on genomics, transcriptomics and metabolomics, the multi-omics analysis further clarifies TNBC subtyping, which provides a greater understanding of tumour heterogeneity and targeted therapy sensitivity.

View Article and Find Full Text PDF

Aims: Neutrophil extracellular traps (NETs) have been implicated in thrombotic diseases. There is no definitive explanation for how NETs form during acute ischemic strokes (AIS). The purpose of our study was to investigate the potential mechanism and role of NETs formation in the AIS process.

View Article and Find Full Text PDF

Radiotherapy (RT) plays an important role in the treatment for locally advanced rectal cancer patients. It can bring radio exposure together with the survival benefit. Cancer survivors are generally at an increased risk for second malignancies, and survivors receiving RT may have higher risks than survivors not receiving RT.

View Article and Find Full Text PDF

Background: The devastating coronavirus disease of 2019 (COVID-2019) epidemic has been declared a public health emergency, resulting in a worldwide pandemic. The omicron variety is the most common epidemic mutant strain in the globe. Serum beta-2 microglobulin (β2-MG) is associated with endothelial cell injury and has value in monitoring the progression of inflammation in infected individuals.

View Article and Find Full Text PDF

G protein-coupled receptor (GPR81), as lactate receptor, is an upstart in immune regulation, however, its mechanisms involved in tumor escape have not been fully elucidated. In this study, we explored the effects of GPR81 activation on triple-negative breast cancer (TNBC) cells and macrophages. The expression and relationship with immune infiltration of GPR81 were analyzed with TCGA database.

View Article and Find Full Text PDF

Lactate is critical in modeling tumor microenvironment causing chemotherapy resistance; however, the role of lactate in tyrosine kinase inhibitor (TKI) resistance has not been fully known. The aim of this study was to evaluate whether lactate could mediate TKI resistance through GPR81 and MCT1 in non-small-cell lung cancer (NSCLC). Here, we showed that lactate enhanced the cell viability and restrained erlotinib-induced apoptosis in PC9 and HCC827 cells.

View Article and Find Full Text PDF

Background: We conducted this study to explore clinicopathological profiles of brain metastases (BM) and establish a clinical prediction model that predicts the presence of BM in colorectal cancer (CRC) patients.

Methods: Patients with initially diagnosed CRC were reviewed between the year 2010 and 2015. Multiple imputations are used for handling missing values.

View Article and Find Full Text PDF

Background: Myelosuppression is common and threatening during tumor treatment. However, the effect of radiation on bone marrow activity, especially leukocyte count, has been underestimated in cervical cancer. The aim of this study was to evaluate the severity of radiotherapy- induced acute leukopenia and its relationship with intestinal toxicity.

View Article and Find Full Text PDF

Background: Hypoxic microenvironment is immunosuppressive and protumorigenic, and elevated lactate is an intermediary in the modulation of immune responses. However, as critical lactate transporters, the role of SLC16A1 and SLC16A3 in immune infiltration and evasion of glioma is not fully elucidated.

Methods: Gene expression in low- and high-grade glioma (LGG and GBM) was evaluated with TCGA database.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are known to play a role in various diseases affecting coagulation. As of now, it is unclear whether NETs are present in hematoma samples collected from patients who have suffered an intracranial hemorrhage (ICH). The objective of this was to determine whether NETs are present in circulation and hematoma samples from ICH patients and to evaluate the procoagulant activity (PCA) of NETs during the ICH process.

View Article and Find Full Text PDF

Cryptotanshinone (CTS), a diterpenoid quinone, is found mostly in Bunge () and plays a crucial role in many cellular processes, such as cell proliferation/self-renewal, differentiation and apoptosis. In particular, CTS's profound physiological impact on various stem cell populations and their maintenance and fate determination could improve the efficiency and accuracy of stem cell therapy for high-incidence disease. However, as much promise CTS holds, these CTS-mediated processes are complex and multifactorial and many of the underlying mechanisms as well as their clinical significance for high-incidence diseases are not yet fully understood.

View Article and Find Full Text PDF

Purpose: Lactate, a marker of tumor metabolic reprogramming, maintains the acidic microenvironment and also affects the metabolism and function of immune cells. SLC16A3 is responsible for the extracellular transport of lactate, which is a key component of glycolysis. However, the role of SLC16A3 in immune infiltration and immunosuppression of lung cancer is largely unknown.

View Article and Find Full Text PDF

Background: Aging is associated with a decline in cognitive and physical functions and various geriatric diseases, such as cardiovascular and neurodegenerative diseases. Puerarin (Pue), one of the main active flavonoids of Radix Puerariae (R. pueraria), is reportedly effective in treating geriatric diseases, including cardiovascular disease and hypertension.

View Article and Find Full Text PDF

Background: Essential thrombocythemia (ET) is characterized by thrombocytosis with increased platelet number and persistent activation. The mechanisms of thrombosis and the fate of these platelets are not clear. The aim of the present study is to explore the phagocytosis of platelets of ET patients by endothelial cells (ECs) in vitro and its relevance to the procoagulant activity (PCA).

View Article and Find Full Text PDF

Background And Aims: Despite the presence of neutrophil extracellular traps [NETs] in inflamed colon having been confirmed, the role of NETs, especially the circulating NETs, in the progression and thrombotic tendency of inflammatory bowel disease [IBD] remains elusive. We extended our previous study to prove that NETs constitute a central component in the progression and prothrombotic state of IBD.

Methods: In all 48 consecutive patients with IBD were studied.

View Article and Find Full Text PDF

Autophagy plays a complicated role in tumorigenesis, and the effects of autophagy in drug resistance have not been fully known. The aim of this study was to evaluate autophagy activity in lung cancer cells derived from different origins and explore the mechanism regulating autophagy in tyrosine kinase inhibitor (TKI) resistance. We found basal level of autophagy had no significant increase in resistant H1650 and H1975 cells compared with sensitive HCC827 and PC9 cells.

View Article and Find Full Text PDF