Publications by authors named "Rafaqat Ali Gill"

CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes.

View Article and Find Full Text PDF

CRISPR/Cas9 gene technology is transported as RNA from transgenic roots to distal parts of unmodified grafted scion, where it is translated into proteins to induce heritable mutagenesis at desired loci. This technique has the potential to produce transgene-free and genetically stable plants in difficult-to-propagate and near-extinct species.

View Article and Find Full Text PDF

Background: Oilseed rape (Brassica napus L.) is known as one of the most important oilseed crops cultivated around the world. However, its production continuously faces a huge challenge of Sclerotinia stem rot (SSR), a destructive disease caused by the fungus Sclerotinia sclerotiorum, resulting in huge yield loss annually.

View Article and Find Full Text PDF
Article Synopsis
  • Oil seed rape (B. napus) is a major global oil seed crop, and recent genetic advancements have uncovered significant genetic diversity within it using single nucleotide polymorphism (SNP) markers.
  • Next-generation sequencing (NGS) technologies have improved the quantity and quality of SNP data, but thorough quality control (QC) is essential to ensure accurate analyses.
  • The study discusses various methods for SNP detection, filtering, and validation, emphasizing their applications in breeding programs aimed at enhancing traits like root structure, flowering time, and oil quality.
View Article and Find Full Text PDF

A pervasive melatonin () reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals.

View Article and Find Full Text PDF

Sclerotinia stem rot (SSR) caused by () is the main disease threat of oilseed rape (), resulting in huge economic losses every year. SSR resistance manifests as quantitative disease resistance (QDR), and no gene with complete SSR resistance has been cloned or reported so far. Transcriptome analysis has revealed a large number of defense-related genes and response processes.

View Article and Find Full Text PDF

The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences.

View Article and Find Full Text PDF

Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security.

View Article and Find Full Text PDF

The proteins of membrane transporters (MTs) are embedded within membrane-bounded organelles and are the prime targets for improvements in the efficiency of water and nutrient transportation. Their function is to maintain cellular homeostasis by controlling ionic movements across cellular channels from roots to upper plant parts, xylem loading and remobilization of sugar molecules from photosynthesis tissues in the leaf (source) to roots, stem and seeds (sink) via phloem loading. The plant's entire source-to-sink relationship is regulated by multiple transporting proteins in a highly sophisticated manner and driven based on different stages of plant growth and development (PG&D) and environmental changes.

View Article and Find Full Text PDF

Traits related to flowering time are the most promising agronomic traits that directly impact the seed yield and oil quality of rapeseed ( L.). Developing early flowering and maturity rapeseed varieties is an important breeding objective in .

View Article and Find Full Text PDF

Cereals and pulses are consumed as a staple food in low-income countries for the fulfillment of daily dietary requirements and as a source of micronutrients. However, they are failing to offer balanced nutrition due to deficiencies of some essential compounds, macronutrients, and micronutrients, i.e.

View Article and Find Full Text PDF

The action of nanoparticles is increasingly being studied in recent years to minimize their toxic impacts. Besides this, efforts are also being made to minimize their toxicity in crop plants by using various chemicals, i.e.

View Article and Find Full Text PDF

Cereals are the major contributors to global food supply, accounting for more than half of the total human calorie requirements. Sustainable availability of quality cereal grains is an important step to address the high-priority issue of food security. High concentrations of heavy metals specifically lead (Pb) in the soil negatively affect biochemical and physiological processes regulating grain quality in cereals.

View Article and Find Full Text PDF

In this study analysis of soil, water and plant residue samples is presented to evaluate the contamination levels and possible health risks. Hexachlorocyclohexane (HCH) is a persistent organic pollutant used as a pesticide in agricultural sector for pest control in order to obtain higher productivity. For analysis soil, water and crop residue samples were collected from different agricultural areas of the northern Punjab region of Pakistan.

View Article and Find Full Text PDF

Membrane-bound fatty acid desaturase (FAD) gene family plays crucial roles in regulation of fatty acid (FA) compositions in plants. Sunflower (Helianthus annuus L.) is an important oilseed crop in the world; however, no comprehensive study on exploring the role of FAD family in relation to stress tolerance in sunflower has been performed yet.

View Article and Find Full Text PDF

The genus Brassica, family Brassicaceae (Cruciferae), comprises many important species of oil crops, vegetables and medicinal plants including B. rapa, B. oleracea, B.

View Article and Find Full Text PDF

In most crop breeding programs, the rate of yield increment is insufficient to cope with the increased food demand caused by a rapidly expanding global population. In plant breeding, the development of improved crop varieties is limited by the very long crop duration. Given the many phases of crossing, selection, and testing involved in the production of new plant varieties, it can take one or two decades to create a new cultivar.

View Article and Find Full Text PDF

Brassica napus is a recent allopolyploid derived from the hybridization of Brassica rapa (A A ) and Brassica oleracea (C C ). Because of the high sequence similarity between the A and C subgenomes, it is difficult to provide an accurate landscape of the whole transcriptome of B. napus.

View Article and Find Full Text PDF

Background: The ubiquitous signaling molecule melatonin (N-acetyl-5-methoxytryptamine) (MT) plays vital roles in plant development and stress tolerance. Selenium (Se) may be phytotoxic at high concentrations. Interactions between MT and Se (IV) stress in higher plants are poorly understood.

View Article and Find Full Text PDF

The phytotoxicity of chromium (Cr) makes it obligatory for the researchers to develop strategies that seek to hinder its accumulation in food chains. While, protective role of selenium (Se) has not been discussed in detail under adverse conditions in oilseed rape. Here, our aim was to investigate the potential use of Se (0, 5 and 10 μM) in alleviating the Cr toxicity (0, 100 and 200 μM) in Brassica napus L.

View Article and Find Full Text PDF

Selenium (Se) is a prerequisite metalloid for humans and animals. But, its essentialness or phytotoxicity is still obscure. Here, we investigated the dual effects of sodium selenite (0, 25, 50 or 100 μM) on the physio-biochemical, anatomical and molecular alterations in different Brassicca napus L.

View Article and Find Full Text PDF

In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate (ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids (BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273 (100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.

View Article and Find Full Text PDF

The plant hormone auxin plays a crucial role in lateral root development. To better understand the molecular mechanisms underlying lateral root formation, an auxin-responsive gene OsCYP2 (Os02g0121300) was characterized from rice. Compared to the wild type, OsCYP2-RNAi (RNA interference) lines exhibited distinctive defects in lateral root development.

View Article and Find Full Text PDF