Analysis of Tissue-Specific Defense Responses to in .

Plants (Basel)

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sclerotinia stem rot (SSR) caused by () is the main disease threat of oilseed rape (), resulting in huge economic losses every year. SSR resistance manifests as quantitative disease resistance (QDR), and no gene with complete SSR resistance has been cloned or reported so far. Transcriptome analysis has revealed a large number of defense-related genes and response processes. However, the similarities and differences in the defense responses of different tissues are rarely reported. In this study, we analyzed the similarities and differences of different tissues in response to at 24 h post inoculation (hpi) by using the published transcriptome data for respective leaf and stem inoculation. At 24 hpi, large differences in gene expression exist in leaf and stem, and there are more differentially expressed genes and larger expression differences in leaf. The leaf is more sensitive to and shows a stronger response than stem. Different defense responses appear in the leaf and stem, and the biosynthesis of lignin, callose, lectin, chitinase, PGIP, and PR protein is activated in leaf. In the stem, lipid metabolism-mediated defense responses are obviously enhanced. For the common defense responses in both leaf and stem, the chain reactions resulting from signal transduction and biological process take the primary responsibility. This research will be beneficial to exploit the potential of different tissues in plant defense and find higher resistance levels of genotypic variability in different environments. Our results are significant in the identification of resistance genes and analysis of defense mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370628PMC
http://dx.doi.org/10.3390/plants11152001DOI Listing

Publication Analysis

Top Keywords

defense responses
20
leaf stem
20
ssr resistance
8
similarities differences
8
inoculation hpi
8
defense
7
stem
7
leaf
7
responses
5
resistance
5

Similar Publications

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF

Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.

View Article and Find Full Text PDF