98%
921
2 minutes
20
Brassica napus is a recent allopolyploid derived from the hybridization of Brassica rapa (A A ) and Brassica oleracea (C C ). Because of the high sequence similarity between the A and C subgenomes, it is difficult to provide an accurate landscape of the whole transcriptome of B. napus. To overcome this problem, we applied a single-molecule long-read isoform sequencing (Iso-Seq) technique that can produce long reads to explore the complex transcriptome of B. napus at the isoform level. From the Iso-Seq data, we obtained 147 698 non-redundant isoforms, capturing 37 403 annotated genes. A total of 18.1% (14 934/82 367) of the multi-exonic genes showed alternative splicing (AS). In addition, we identified 549 long non-coding RNAs, the majority of which displayed tissue-specific expression profiles, and detected 7742 annotated genes that possessed isoforms containing alternative polyadenylation sites. Moreover, 31 591 AS events located in open reading frames (ORFs) lead to potential protein isoforms by in-frame or frameshift changes in the ORF. Illumina RNA sequencing of five tissues that were pooled for Iso-Seq was also performed and showed that 69% of the AS events were tissue-specific. Our data provide abundant transcriptome resources for a transcript isoform catalog of B. napus, which will facilitate genome reannotation, strengthen our understanding of the B. napus transcriptome and be applied for further functional genomic research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.14754 | DOI Listing |
Theor Appl Genet
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec
Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.
View Article and Find Full Text PDFNew Phytol
September 2025
National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Life Sciences, Leshan Normal University, Leshan, Sichuan, China.
(Eukaryotic Transcription Factor 2/Dimerization Partner) refers to a class of protein complexes that play a pivotal role in the regulation of gene transcription in eukaryotes. In higher plants, transcription factors are of vital significance in mediating responses to environmental stresses. Based on differences in their conserved structural domains, they can be categorized into three subgroups: E2F, DP, and DEL (DP-E2F-like).
View Article and Find Full Text PDF