Bioelectromagnetics
September 2025
In this study, a comprehensive approach for the experimental assessment of the absorbed power density (APD) is developed. The method includes several novel components: (i) a specialized probe, (ii) a composite phantom, (iii) a reconstruction technique, (iv) a calibration method, and (v) a validation process. The described solution has been developed for the frequency range from 24 to 30 GHz, but can be extended to all frequency bands between 10 and 45 GHz.
View Article and Find Full Text PDF. Prone (face-down) postures, commonly used in breast examination, as well as in wrist and elbow imaging, change the the induced current path in the body and therefore the incident electric fields to the implants during MR examination, potentially leading to significant variations from risk predictions made in supine postures. The goal of this work is to investigates the impact of prone breast examination postures, compared to supine MR examination postures, on the RF-induced heating of medical implants.
View Article and Find Full Text PDFBackground: The introduction of 5G technology as the latest standard in mobile telecommunications has raised concerns about its potential health effects. Prior studies of earlier generations of radiofrequency electromagnetic fields (RF-EMF) demonstrated narrowband spectral increases in the electroencephalographic (EEG) spindle frequency range (11-16 Hz) in non-rapid-eye-movement (NREM) sleep. However, the impact of 5G RF-EMF on sleep remains unexplored.
View Article and Find Full Text PDFFront Neuroimaging
June 2025
Introduction: Fourier base fitting for masked or incomplete structured data holds significant importance, for example in biomedical image data processing. However, data incompleteness destroys the simple unitary form of the Fourier transformation, necessitating the construction and solving of a linear system-a task that can suffer from poor conditioning and be computationally expensive. Despite its importance, suitable methodology addressing this challenge is not readily available.
View Article and Find Full Text PDFAs the size and complexity of network simulations accessible to computational neuroscience grows, new avenues open for research into extracellularly recorded electric signals. Biophysically detailed simulations permit the identification of the biological origins of the different components of recorded signals, the evaluation of signal sensitivity to different anatomical, physiological, and geometric factors, and selection of recording parameters to maximize the signal information content. Simultaneously, virtual extracellular signals produced by these networks may become important metrics for neuro-simulation validation.
View Article and Find Full Text PDFBioelectromagnetics
May 2025
Short-dipole diode sensors loaded with highly resistive lines are commonly used to measure the time-averaged square of the high-frequency electromagnetic field amplitude directly. Their precision, simplicity, broadband, high dynamic range capability, and minimal scattering make them ideal for application in the near-field of sources, particularly for demonstrating compliance with exposure limits. However, the usage of these sensors to cover multiple orders of magnitude of field amplitude requires signal-specific linearization of the sensor response.
View Article and Find Full Text PDFNon-invasive brain stimulation (NIBS) offers therapeutic benefits for various brain disorders. Personalization may enhance these benefits by optimizing stimulation parameters for individual subjects.We present a computational pipeline for simulating and assessing the effects of NIBS using personalized, large-scale brain network activity models.
View Article and Find Full Text PDFBioelectromagnetics
February 2025
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, non-invasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and non-clinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. In order to inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.
View Article and Find Full Text PDFTemporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.
View Article and Find Full Text PDFMedication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation.
View Article and Find Full Text PDFNon-invasive brain stimulation (NIBS) methodologies, such as transcranial electric stimulation (tES) are increasingly employed for therapeutic, diagnostic, or research purposes. The concurrent presence of active/passive implants can pose safety risks, affect the NIBS delivery, or generate confounding signals. A systematic investigation is required to understand the interaction mechanisms, quantify exposure, assess risks, and establish guidance for NIBS applications.
View Article and Find Full Text PDF. Spinal cord stimulation (SCS) is a well-established treatment for managing certain chronic pain conditions. More recently, it has also garnered attention as a means of modulating neural activity to restore lost autonomic or sensory-motor function.
View Article and Find Full Text PDFNat Neurosci
November 2023
Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity.
View Article and Find Full Text PDFMagn Reson Med
February 2024
Purpose: Radiofrequency (RF) exposure during MR examination is limited by IEC 60601-2-33 to prevent thermal hazards to patients. These limits are also the basis to derive the maximum induced field for the demonstration of MR safety of implants per ISO/TS 10974 (2018). One limit is the head-averaged specific absorption rate (SAR), for which the head extent is defined differently by MR and implant vendors.
View Article and Find Full Text PDF. Craniospinal compliance (CC) is an important metric for the characterization of space-occupying neurological pathologies. CC is obtained using invasive procedures that carry risks for the patients.
View Article and Find Full Text PDF. Regulators require that wireless power transfer (WPT) systems and other strong magnetic field sources are compliant with the basic restrictions (BR) defined as the limits of the fields induced in the human body, i.e.
View Article and Find Full Text PDFNeuroimage Clin
March 2023
Monitoring intracranial pressure (ICP) and craniospinal compliance (CC) is frequently required in the treatment of patients suffering from craniospinal diseases. However, current approaches are invasive and cannot provide continuous monitoring of CC. Dynamic exchange of blood and cerebrospinal fluid (CSF) between cranial and spinal compartments due to cardiac action transiently modulates the geometry and dielectric properties of the brain.
View Article and Find Full Text PDFBioelectromagnetics
October 2022
This study investigates the absorption of the induced E-field in homogeneous biological tissue exposed to highly localized field sources in proximity of the body, such as the charged tips of antennas, where E-field coupling dominates. These conditions are relevant for compliance testing of modern mobile phones where exposure is evaluated at small separation between radiators and the body. We derive an approximation that characterizes the decay of the induced E-field in the tissue as a function of distance.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
January 2023
Objective: The clinical management of several neurological disorders benefits from the assessment of intracranial pressure and craniospinal compliance. However, the associated procedures are invasive in nature. Here, we aimed to assess whether naturally occurring periodic changes in the dielectric properties of the head could serve as the basis for deriving surrogates of craniospinal compliance noninvasively.
View Article and Find Full Text PDFPurpose: Healthy tissue hotspots are a main limiting factor in administering deep hyperthermia cancer therapy. We propose an optimization scheme that uses time-multiplexed steering (TMPS) among minimally correlated (nearly) Pareto-optimal solutions to suppress hotspots without reducing tumor heating. Furthermore, tumor heating homogeneity is maximized, thus reducing toxicity and avoiding underexposed tumor regions, which in turn may reduce recurrence.
View Article and Find Full Text PDFEpidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI.
View Article and Find Full Text PDFPLoS Comput Biol
October 2021
Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates.
View Article and Find Full Text PDFLow-Intensity Focused Ultrasound Stimulation (LIFUS) holds promise for the remote modulation of neural activity, but an incomplete mechanistic characterization hinders its clinical maturation. Here we developed a computational framework to model intramembrane cavitation (a candidate mechanism) in multi-compartment, morphologically structured neuron models, and used it to investigate ultrasound neuromodulation of peripheral nerves. We predict that by engaging membrane mechanoelectrical coupling, LIFUS exploits fiber-specific differences in membrane conductance and capacitance to selectively recruit myelinated and/or unmyelinated axons in distinct parametric subspaces, allowing to modulate their activity concurrently and independently over physiologically relevant spiking frequency ranges.
View Article and Find Full Text PDFPhys Med Biol
September 2021
. To characterize and quantify the induced radiofrequency (RF) electric ()-fields andfields in patients undergoing magnetic resonance (MR) examinations; to provide guidance on aspects of RF heating risks for patients with and without implants; and to discuss some strengths and limitations of safety assessments in current ISO, IEC, and ASTM standards to determine the RF heating risks for patients with and without implants..
View Article and Find Full Text PDF