A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MorphoSONIC: A morphologically structured intramembrane cavitation model reveals fiber-specific neuromodulation by ultrasound. | LitMetric

MorphoSONIC: A morphologically structured intramembrane cavitation model reveals fiber-specific neuromodulation by ultrasound.

iScience

Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-Intensity Focused Ultrasound Stimulation (LIFUS) holds promise for the remote modulation of neural activity, but an incomplete mechanistic characterization hinders its clinical maturation. Here we developed a computational framework to model intramembrane cavitation (a candidate mechanism) in multi-compartment, morphologically structured neuron models, and used it to investigate ultrasound neuromodulation of peripheral nerves. We predict that by engaging membrane mechanoelectrical coupling, LIFUS exploits fiber-specific differences in membrane conductance and capacitance to selectively recruit myelinated and/or unmyelinated axons in distinct parametric subspaces, allowing to modulate their activity concurrently and independently over physiologically relevant spiking frequency ranges. These theoretical results consistently explain recent empirical findings and suggest that LIFUS can simultaneously, yet selectively, engage different neural pathways, opening up opportunities for peripheral neuromodulation currently not addressable by electrical stimulation. More generally, our framework is readily applicable to other neural targets to establish application-specific LIFUS protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456061PMC
http://dx.doi.org/10.1016/j.isci.2021.103085DOI Listing

Publication Analysis

Top Keywords

morphologically structured
8
intramembrane cavitation
8
morphosonic morphologically
4
structured intramembrane
4
cavitation model
4
model reveals
4
reveals fiber-specific
4
fiber-specific neuromodulation
4
neuromodulation ultrasound
4
ultrasound low-intensity
4

Similar Publications