Front Neuroimaging
June 2025
Introduction: Fourier base fitting for masked or incomplete structured data holds significant importance, for example in biomedical image data processing. However, data incompleteness destroys the simple unitary form of the Fourier transformation, necessitating the construction and solving of a linear system-a task that can suffer from poor conditioning and be computationally expensive. Despite its importance, suitable methodology addressing this challenge is not readily available.
View Article and Find Full Text PDFAs the size and complexity of network simulations accessible to computational neuroscience grows, new avenues open for research into extracellularly recorded electric signals. Biophysically detailed simulations permit the identification of the biological origins of the different components of recorded signals, the evaluation of signal sensitivity to different anatomical, physiological, and geometric factors, and selection of recording parameters to maximize the signal information content. Simultaneously, virtual extracellular signals produced by these networks may become important metrics for neuro-simulation validation.
View Article and Find Full Text PDFBioelectromagnetics
May 2025
Short-dipole diode sensors loaded with highly resistive lines are commonly used to measure the time-averaged square of the high-frequency electromagnetic field amplitude directly. Their precision, simplicity, broadband, high dynamic range capability, and minimal scattering make them ideal for application in the near-field of sources, particularly for demonstrating compliance with exposure limits. However, the usage of these sensors to cover multiple orders of magnitude of field amplitude requires signal-specific linearization of the sensor response.
View Article and Find Full Text PDFBackground: Temporal interference stimulation (TIS) is a novel noninvasive electrical stimulation technique to focally modulate deep brain regions; a minimum of two high-frequency signals (f and f > 1 kHz) interfere to create an envelope-modulated signal at a deep brain target with the frequency of modulation equal to the difference frequency: Δf = |f - f|.
Objective: The goals of this study were to verify the capability of TIS to modulate the subthalamic nucleus (STN) with Δf and to compare the effect of TIS and conventional deep brain stimulation (DBS) on the STN beta oscillations in patients with Parkinson's disease (PD).
Methods: DBS leads remained externalized after implantation, allowing local field potentials (LFPs) recordings in eight patients with PD.
Temporal interference (TI) is a method of non-invasive brain stimulation using transcutaneous electrodes which allows the targeting and modulation of deeper brain structures, not normally associated with non-invasive simulation, while avoiding unwanted stimulation of shallower cortical structures. The properties of TI have been previously demonstrated, however, the problem of decoupling stimulation focality from stimulation intensity has not yet been well addressed. In this paper, we provide a possible novel solution, multipolar TI (mTI), which allows increased independent control over both the size of the stimulated region and the stimulation intensity.
View Article and Find Full Text PDFNon-invasive brain stimulation (NIBS) offers therapeutic benefits for various brain disorders. Personalization may enhance these benefits by optimizing stimulation parameters for individual subjects.We present a computational pipeline for simulating and assessing the effects of NIBS using personalized, large-scale brain network activity models.
View Article and Find Full Text PDFBioelectromagnetics
February 2025
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, non-invasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and non-clinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. In order to inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.
View Article and Find Full Text PDFTemporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.
View Article and Find Full Text PDFMedication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation.
View Article and Find Full Text PDFNon-invasive brain stimulation (NIBS) methodologies, such as transcranial electric stimulation (tES) are increasingly employed for therapeutic, diagnostic, or research purposes. The concurrent presence of active/passive implants can pose safety risks, affect the NIBS delivery, or generate confounding signals. A systematic investigation is required to understand the interaction mechanisms, quantify exposure, assess risks, and establish guidance for NIBS applications.
View Article and Find Full Text PDFBecause of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging.
View Article and Find Full Text PDFReinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study.
View Article and Find Full Text PDF. Spinal cord stimulation (SCS) is a well-established treatment for managing certain chronic pain conditions. More recently, it has also garnered attention as a means of modulating neural activity to restore lost autonomic or sensory-motor function.
View Article and Find Full Text PDFNon-spatial attention is a fundamental cognitive mechanism that allows organisms to orient the focus of conscious awareness towards sensory information that is relevant to a behavioural goal while shifting it away from irrelevant stimuli. It has been suggested that attention is regulated by the ongoing phase of slow excitability fluctuations of neural activity in the prefrontal cortex, a hypothesis that has been challenged with no consensus. Here we developed a behavioural and non-invasive stimulation paradigm aiming at modulating slow excitability fluctuations of the inferior frontal junction.
View Article and Find Full Text PDFNat Neurosci
November 2023
Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity.
View Article and Find Full Text PDFThe stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models.
View Article and Find Full Text PDFBackground: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method.
View Article and Find Full Text PDFTranscranial random noise stimulation (tRNS) has been shown to significantly improve visual perception. Previous studies demonstrated that tRNS delivered over cortical areas acutely enhances visual contrast detection of weak stimuli. However, it is currently unknown whether tRNS-induced signal enhancement could be achieved within different neural substrates along the retino-cortical pathway.
View Article and Find Full Text PDF. Craniospinal compliance (CC) is an important metric for the characterization of space-occupying neurological pathologies. CC is obtained using invasive procedures that carry risks for the patients.
View Article and Find Full Text PDFNeuroimage Clin
March 2023
Monitoring intracranial pressure (ICP) and craniospinal compliance (CC) is frequently required in the treatment of patients suffering from craniospinal diseases. However, current approaches are invasive and cannot provide continuous monitoring of CC. Dynamic exchange of blood and cerebrospinal fluid (CSF) between cranial and spinal compartments due to cardiac action transiently modulates the geometry and dielectric properties of the brain.
View Article and Find Full Text PDFBioelectromagnetics
October 2022
This study investigates the absorption of the induced E-field in homogeneous biological tissue exposed to highly localized field sources in proximity of the body, such as the charged tips of antennas, where E-field coupling dominates. These conditions are relevant for compliance testing of modern mobile phones where exposure is evaluated at small separation between radiators and the body. We derive an approximation that characterizes the decay of the induced E-field in the tissue as a function of distance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Bladder dysfunction is a major health risk for people with spinal cord injury. Recently, we have demonstrated that epidural sacral spinal cord stimulation (SCS) can be used to activate lower urinary tract nerves and provide both major components of bladder control: voiding and continence. To effectively control these functions, it is necessary to selectively recruit the afferents of the pudendal nerve that evoke these distinct bladder reflexes.
View Article and Find Full Text PDFIntroduction: Neurostimulation applied from deep brain stimulation (DBS) electrodes is an effective therapeutic intervention in patients suffering from intractable drug-resistant epilepsy when resective surgery is contraindicated or failed. Inhibitory DBS to suppress seizures and associated epileptogenic biomarkers could be performed with high-frequency stimulation (HFS), typically between 100 and 165 Hz, to various deep-seated targets, such as the Mesio-temporal lobe (MTL), which leads to changes in brain rhythms, specifically in the hippocampus. The most prominent alterations concern high-frequency oscillations (HFOs), namely an increase in ripples, a reduction in pathological Fast Ripples (FRs), and a decrease in pathological interictal epileptiform discharges (IEDs).
View Article and Find Full Text PDFComputational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results.
View Article and Find Full Text PDF