Publications by authors named "Pierre Vassiliadis"

Apathy is marked by disruptions in effort-based decision-making for rewards and alterations in fronto-basal ganglia (BG) circuits. While changes in primary motor cortex (M1) activity during effort and reward valuation have been reported, prior work on apathy and effort-based decision-making has overlooked the connections between fronto-BG structures and M1. Here, we addressed this gap by investigating structural and effective connectivity within fronto-M1, fronto-BG-M1, and intra-M1 circuits in 45 healthy participants using tractography and paired-pulse transcranial magnetic stimulation.

View Article and Find Full Text PDF

Human motor skill acquisition is improved by performance feedback, and coupling such feedback with extrinsic reward (such as money) can enhance skill learning. However, the neurophysiology underlying such behavioral effect is unclear. To bridge this gap, we assessed the effects of reward on multiple forms of motor plasticity during skill learning.

View Article and Find Full Text PDF

Over the past decade, research has shown that the primary motor cortex (M1), the brain's main output for movement, also responds to rewards. These reward signals may shape motor output in its final stages, influencing movement invigoration and motor learning. In this Perspective, we highlight the functional roles of M1 reward signals and propose how they could guide advances in neurotechnologies for movement restoration, specifically brain-computer interfaces and non-invasive brain stimulation.

View Article and Find Full Text PDF

Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging.

View Article and Find Full Text PDF

Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study.

View Article and Find Full Text PDF

Objective: We predicted that accelerometry would be a viable alternative to electromyography (EMG) for assessing fundamental Transcranial Magnetic Stimulation (TMS) measurements (e.g. Resting Motor Threshold (RMT), recruitment curves, latencies).

View Article and Find Full Text PDF

. Selective neuromodulation of deep brain regions has for a long time only been possible through invasive approaches, because of the steep depth-focality trade-off of conventional non-invasive brain stimulation (NIBS) techniques..

View Article and Find Full Text PDF

The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models.

View Article and Find Full Text PDF

Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively.

View Article and Find Full Text PDF

Reward timing, that is, the delay after which reward is delivered following an action is known to strongly influence reinforcement learning. Here, we asked if reward timing could also modulate how people learn and consolidate new motor skills. In 60 healthy participants, we found that delaying reward delivery by a few seconds influenced motor learning.

View Article and Find Full Text PDF

Latencies of motor evoked potentials (MEPs) can provide insights into the motor neuronal pathways activated by transcranial magnetic stimulation. Notwithstanding its clinical relevance, accurate, unbiased methods to automatize latency detection are still missing.We present a novel open-source algorithm suitable for MEP onset/latency detection during resting state that only requires the post-stimulus electromyography signal and exploits the approximation of the first derivative of this signal to find the time point of initial deflection of the MEP.

View Article and Find Full Text PDF

Besides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants.

View Article and Find Full Text PDF

Training can improve motor skills and modify neural activity at rest and during movement execution. Learning-related modulations may also concern motor preparation but the neural correlates and the potential behavioral relevance of such adjustments remain unclear. In humans, preparatory processes have been largely investigated using transcranial magnetic stimulation (TMS) with several studies reporting decreased corticospinal excitability (CSE) relative to a baseline measure at rest; a phenomenon called preparatory suppression.

View Article and Find Full Text PDF

The motor system displays strong changes in neural activity during action preparation. In the past decades, several techniques, including transcranial magnetic stimulation (TMS), electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have allowed us to gain insights into the functional role of such preparatory activity in humans. More recently, new TMS tools have been proposed to study the mechanistic principles underlying the changes in corticospinal excitability during action preparation.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb-usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts.

View Article and Find Full Text PDF

Background: For several decades, Transcranial magnetic stimulation (TMS) has been used to monitor corticospinal excitability (CSE) changes in various contexts. Habitually, single-coil TMS is applied over one primary motor cortex (M1), eliciting motor-evoked potentials (MEPs) in a contralateral limb muscle, usually a hand effector. However, in many situations, it would be useful to obtain MEPs in both hands simultaneously, to track CSE bilaterally.

View Article and Find Full Text PDF

The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions.

View Article and Find Full Text PDF