Publications by authors named "Florent Lebon"

In high mountain environments, mountaineers regularly face decisions that put the physical integrity of all group members at risk, particularly in avalanche-prone terrain. These decisions, where consequences and probabilities are known, is called decision-making under risk. While knowledge and skills form the foundation of avalanche safety training, age and expertise may not be the only predictive factors.

View Article and Find Full Text PDF

Language comprehension is increasingly recognized as extending beyond the traditional linguistic system to engage motor and perceptual processes. This perspective is supported by numerous studies demonstrating that understanding action-related words often induces behavioral and neurophysiological changes in the motor system. However, it remains unclear whether the influence of action language on the motor system is restricted to cortical regions or whether it also extends to spinal structures, as observed during motor imagery.

View Article and Find Full Text PDF

Background: Mental rehearsal (MR), the deliberate practice of skills specific to a procedure, has been successfully used in sports and music training for decades, but has not been adopted in surgery. This narrative review explores MR's role in surgical training and clinical practice, evaluating its effectiveness in motor skill acquisition, technical and non-technical skill development, and real world clinical implementation. Our aim was to assess MR's impact on both surgical education and clinical performance, while identifying the barriers to its routine adoption in surgical training.

View Article and Find Full Text PDF

Although both motor imagery (MI) and low-frequency sound listening have independently been shown to modulate brain activity, the potential synergistic effects that may arise from their combined application remains unexplored. Any further modulation derived from this combination may be relevant for motor learning and rehabilitation. We probed neurophysiological activity during these two processes, measuring alpha and beta band power amplitude by means of EEG recordings.

View Article and Find Full Text PDF

In this article we aimed synthesize all available evidence regarding the effects of non-invasive brain stimulation (NIBS) techniques combined with mindfulness-based interventions (MBIs) on mental health indicators. We performed a systematic review of randomized controlled trials evaluating NIBS/MBIs combinations in clinical populations and a random effects pairwise meta-analysis of studies evaluating anxiety and depression symptoms. After independent trial selection by two authors based on titles/abstracts, and then on full texts, twelve trials were retrieved.

View Article and Find Full Text PDF

Individuals with aphantasia report having difficulties or an inability to generate visual images of objects or events. So far, there is no evidence showing that this condition also impacts the motor system and the generation of motor simulations. We probed the neurophysiological marker of aphantasia during explicit and implicit forms of motor simulation, i.

View Article and Find Full Text PDF

In this position paper, the authors support with recent behavioral findings the theory of internal simulations during motor imagery, initiated in the 90's. In this commentary, I will provide additional evidence from other research groups to support this theory and discuss the neurophysiological basis of inhibition (surround inhibition, inhibition within the primary cortex) and internal models (including the cerebellum).

View Article and Find Full Text PDF

Background: Mindfulness training programs and non-invasive brain stimulation are both evidence-based interventions that have applications in mental health disorders. While both have showed promising results on a range of symptoms related to mental health, their combination has more recently grabbed the attention of researchers. There is a theoretical framework for their synergistic effects, and these effects can be tested through a variety of neurophysiological and clinical outcomes.

View Article and Find Full Text PDF

Action reading is thought to engage motor simulations, such as those involved during the generation of mental motor images. These simulations would yield modulations in activity of motor-related cortical regions and contribute to action language comprehension. To test these ideas, we measured corticospinal excitability during action reading, and reading comprehension ability, in individuals with normal and impaired imagery (i.

View Article and Find Full Text PDF

Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively.

View Article and Find Full Text PDF

Human aging is associated with a decline in the capacity to memorize recently acquired motor skills. Motor imagery training is a beneficial method to compensate for this deterioration in old adults. It is not yet known whether these beneficial effects are maintained in very old adults (>80 years), who are more affected by the degeneration processes.

View Article and Find Full Text PDF

Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance.

View Article and Find Full Text PDF

Motor imagery (MI) refers to the mental simulation of an action without overt movement. While numerous transcranial magnetic stimulation (TMS) studies provided evidence for a modulation of corticospinal excitability and intracortical inhibition during MI, the neural signature within the primary motor cortex is not clearly established. In the current study, we used directional TMS to probe the modulation of the excitability of early and late indirect waves (I-waves) generating pathways during MI.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effect of Motor Imagery (MI) training on language comprehension. In line with literature suggesting an intimate relationship between the language and the motor system, we proposed that a MI-training could improve language comprehension by facilitating lexico-semantic access. In two experiments, participants were assigned to a kinesthetic motor-imagery training (KMI) group, in which they had to imagine making upper-limb movements, or to a static visual imagery training (SVI) group, in which they had to mentally visualize pictures of landscapes.

View Article and Find Full Text PDF

Our brain has the extraordinary capacity to improve motor skills through mental practice. Conceptually, this ability is attributed to internal forward models, which are cerebellar neural networks that can predict the sensory consequences of motor commands. In our study, we employed single and dual-coil transcranial magnetic stimulations to probe the level of corticospinal excitability and cerebellar-brain inhibition, respectively, before and after a mental practice session or a control session.

View Article and Find Full Text PDF

Time-of-day influences both physical and mental performances. Its impact on motor learning is, however, not well established yet. Here, using a finger tapping-task, we investigated the time-of-day effect on skill acquisition (i.

View Article and Find Full Text PDF

Physical practice (PP) and motor imagery practice (MP) lead to the execution of fast and accurate arm movements. However, there is currently no information about the influence of MP on movement smoothness, nor about which performance parameters best discriminate these practices. In the current study, we assessed motor performances with an arm pointing task with constrained precision before and after PP (n = 15), MP (n = 15), or no practice (n = 15).

View Article and Find Full Text PDF

Pain influences both motor behavior and neuroplastic adaptations induced by physical training. Motor imagery (MI) is a promising method to recover motor functions, for instance in clinical populations with limited endurance or concomitant pain. However, the influence of pain on the MI processes is not well established.

View Article and Find Full Text PDF

Action preparation is characterized by a set of complex and distributed processes that occur in multiple brain areas. Interestingly, dual-coil transcranial magnetic stimulation (TMS) is a relevant technique to probe effective connectivity between cortical areas, with a high temporal resolution. In the current systematic review, we aimed at providing a detailed picture of the cortico-cortical interactions underlying action preparation focusing on dual-coil TMS studies.

View Article and Find Full Text PDF

Background: In sports, the risk of pathology or event that leads to an injury, a cessation of practice or even to an immobilization is high. The subsequent reduction of physical activity, or hypoactivity, induces neural and muscular changes that adversely affect motor skills and functional motor rehabilitation. Because the implementation of physical practice is difficult, if not impossible, during and immediately following injury or immobilization, complementary techniques have been proposed to minimize the deleterious impact of hypoactivity on neuromuscular function.

View Article and Find Full Text PDF

Motor imagery practice is a current trend, but there is a need for a systematic integration of neuroscientific advances in the field. In this review, we describe the technique of motor imagery practice and its neural representation, considering different fields of application. The current practice of individualized motor imagery practice schemes often lacks systematization and is mostly based on experience.

View Article and Find Full Text PDF

It well-known that mental training improves skill performance. Here, we evaluated skill acquisition and consolidation after physical or motor imagery practice, by means of an arm pointing task requiring speed-accuracy trade-off. In the main experiment, we showed a significant enhancement of skill after both practices (72 training trials), with a better acquisition after physical practice.

View Article and Find Full Text PDF

Short-interval intracortical inhibition (SICI) represents an inhibitory phenomenon acting at the cortical level. However, SICI estimation is based on the amplitude of a motor-evoked potential (MEP), which depends on the discharge of spinal motoneurones and the generation of compound muscle action potential (M-wave). In this study, we underpin the importance of taking into account the proportion of spinal motoneurones that are activated or not when investigating the SICI of the right flexor carpi radialis (normalization with maximal M-wave (Mmax) and MEP, respectively), in 15 healthy subjects.

View Article and Find Full Text PDF

Motor imagery (MI) is the mental simulation of an action without any apparent muscular contraction. By means of transcranial magnetic stimulation (TMS), few studies revealed a decrease of short-interval intracortical inhibition (SICI) within the primary motor cortex. However, this decrease is ambiguous, as one would expect greater inhibition during MI to prevent overt motor output.

View Article and Find Full Text PDF

Motor imagery, defined as the mental representation of an action without movement-related sensory inputs, is a well-known intervention to improve motor performance. In the current study, we tested whether use-dependent plasticity, a mechanism underlying motor learning, could be induced by an acute session of motor imagery. By means of transcranial magnetic stimulation (TMS) over the left primary motor cortex, we evoked isolated thumb movements in the right hand and assessed corticospinal excitability in the flexor and extensor pollicis brevis muscles.

View Article and Find Full Text PDF