Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524170PMC
http://dx.doi.org/10.1126/sciadv.ado4103DOI Listing

Publication Analysis

Top Keywords

spatial navigation
20
hippocampal-entorhinal complex
8
spatial
5
navigation
5
noninvasive modulation
4
modulation hippocampal-entorhinal
4
complex spatial
4
navigation humans
4
humans depth
4
depth hippocampal-entorhinal
4

Similar Publications

Augmented reality (AR) integrates virtual objects in the real world, allowing users to interact intuitively with navigation information. This study systematically reviewed 13 articles on AR technology published from 2005 to 2024 through meta-analysis, comprising a total of 400 participants, to examine its effectiveness in enhancing navigation performance. Compared with traditional navigation tools, the results showed that AR technology more effectively enhances navigation performance, with the overall effect size calculated as 0.

View Article and Find Full Text PDF

Left Ventricular Motion Analysis Framework for the MATRIX-VT Study.

Int J Comput Assist Radiol Surg

September 2025

Department of Rhythmology, University Heart Center Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, Lübeck, 23652, Germany.

Purpose: Ultrasound (US) is commonly used to assess left ventricular motion for examination of heart function. In stereotactic arrhythmia radioablation (STAR) therapy, managing cardiorespiratory motion during radiation delivery requires representation of motion information in computed tomography (CT) coordinates. Similar to conventional US-guided navigation during surgical procedures, 3D US can provide real-time motion data of the radiation target that could be transferred to CT coordinates and then be accounted for by the radiation system.

View Article and Find Full Text PDF

Objective: The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.

View Article and Find Full Text PDF

Midsession reversal learning performance in harbour seals (Phoca vitulina).

Behav Processes

September 2025

University of Rostock, Institute for Biosciences, Neuroethology, Rostock, Germany. Electronic address:

Reversal learning (RL) experiments explore cognitive flexibility and decision-making processes. Specifically, RL examines the extent and speed at which individuals adapt their choices when reward contingencies change after the point of reversal. One variation of RL is the midsession reversal learning experiment (MRL), in which the point of reversal occurs midway through a session.

View Article and Find Full Text PDF

Functional river restoration as a lever for adapting to climate change from an interdisciplinary emblematic showcase on the Upper Rhine.

J Environ Manage

September 2025

Laboratoire Image, Ville, Environnement (LIVE UMR 7362), Université de Strasbourg, CNRS, ENGEES, ZAEU LTER, 3 rue de l'Argonne, Strasbourg, 67083, France.

Many large rivers have been regulated for navigation improvement, hydro-electricity production, agricultural development and flood protection. River regulation alters both aquatic and riverine habitat dynamics as well as ecological functionalities and ecosystem services. This study aims to evaluate the impacts of river regulation performed along the Rhine as well as climate change to develop a process-based restoration strategy for the Rhinau-Taubergiessen area.

View Article and Find Full Text PDF