98%
921
2 minutes
20
Objective: The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.
Methods: We examined 111 healthy adults for PI using a head-mounted 3D VR system, AD-related plasma biomarkers (GFAP, NfL, Aβ40, Aβ42, and p-tau181), Apolipoprotein E (ApoE) genotype, and demographic and cognitive assessments. Covariance of PI and AD biomarkers was assessed statistically, including tests for multivariate linear regression, logistic regression, and predictor importance ranking using machine learning, to identify predictive relationships for PI errors.
Results: We found significant positive correlations between PI errors with age and plasma GFAP, p-tau181, and NfL levels. Multivariate analysis identified significant correlations of plasma GFAP (-value = 2.16, = 0.0332) and p-tau181 (-value = 2.53, = 0.0128) with PI errors. Predictor importance ranking using machine learning and receiver operating characteristic curves identified plasma p-tau181 as the most significant predictor of PI. ApoE genotype and plasma p-tau181 showed positive and negative PI associations (ApoE: coefficient = 0.650, = 0.037; p-tau181: coefficient = -0.899, = 0.041). EC thickness exhibited negative correlations with age, mean PI errors, and GFAP, NfL, and p-tau181; however, none of these associations remained significant after adjusting for age in linear regression analyses.
Conclusion: These findings suggest that PI quantified by 3D VR navigation systems may be useful as a surrogate diagnostic tool for the detection of early AD pathophysiology. The hierarchical application of 3D VR PI and plasma p-tau181, in particular, may be an effective combinatorial biomarker for early AD neurodegeneration. These findings advance the application of non-invasive diagnostic tools for early testing and monitoring of AD, paving the way for timely therapeutic interventions and improved epidemiological patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405256 | PMC |
http://dx.doi.org/10.3389/fnagi.2025.1571429 | DOI Listing |
J Prev Alzheimers Dis
September 2025
Stanford Neuroscience Health Center, Stanford University, Palo Alto CA USA.
Background: AR1001 is a phosphodiesterase-5 inhibitor that produces improved cognitive performance and reduces amyloid-β and phosphorylated tau burdens in preclinical models of Alzheimer's disease (AD).
Objectives: To evaluate the safety and efficacy of AR1001 in participants with mild-to-moderate Alzheimer's disease (AD).
Design: Randomized, double-blind, placebo-controlled phase 2 trial conducted at 21 sites in the United States.
Alzheimers Dement
September 2025
Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA.
Introduction: Glial fibrillary acidic protein (GFAP) may contribute to Alzheimer's pathology at early disease stages. GFAP moderation of Alzheimer's disease (AD)-related neurodegeneration and cognition is unclear.
Methods: We examined plasma GFAP moderation of AD biomarkers (amyloid beta [Aβ]-positron emission tomography [PET][A]; plasma phosphorylated tau-181 [p-tau181][T]), neurodegeneration (plasma NfL[N]; structural magnetic resonance imaging [MRI][N]), and cognition (Cog; Cog) in two cohorts: University of California San Francisco (UCSF) (N = 212, 91.
JAMA Netw Open
September 2025
Department of Neurosciences, University of California, San Diego, La Jolla.
Importance: Subjective cognitive decline (SCD) may be an early indicator of Alzheimer disease and related dementias (ADRD), yet its association with plasma biomarkers remains unclear among middle-aged and older adults (aged 50-86 years).
Objective: To examine associations between plasma biomarkers of amyloid, tau, neuroaxonal damage, and glial activation with SCD in a heterogeneous cohort of Hispanic and/or Latino adults.
Design, Setting, And Participants: This cross-sectional study used survey-weighted data from the Study of Latinos-Investigation of Neurocognitive Aging, an ancillary study of the Hispanic Community Health Study/Study of Latinos.
Clin Nucl Med
September 2025
Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea.
Background: Alzheimer disease (AD) is characterized by amyloid-β plaques (A), tau tangles (T), and neurodegeneration (N), collectively defining the ATN framework. While imaging biomarkers are well-established, the prognostic value of plasma biomarkers in predicting cognitive decline remains underexplored. This study compares plasma and imaging A/T/N biomarkers in predicting cognitive decline and evaluate the impact of combining biomarkers across modalities.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
Objective: The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.
View Article and Find Full Text PDF