Publications by authors named "Arya Fallahi"

In this study, a comprehensive approach for the experimental assessment of the absorbed power density (APD) is developed. The method includes several novel components: (i) a specialized probe, (ii) a composite phantom, (iii) a reconstruction technique, (iv) a calibration method, and (v) a validation process. The described solution has been developed for the frequency range from 24 to 30 GHz, but can be extended to all frequency bands between 10 and 45 GHz.

View Article and Find Full Text PDF

Introduction: Fourier base fitting for masked or incomplete structured data holds significant importance, for example in biomedical image data processing. However, data incompleteness destroys the simple unitary form of the Fourier transformation, necessitating the construction and solving of a linear system-a task that can suffer from poor conditioning and be computationally expensive. Despite its importance, suitable methodology addressing this challenge is not readily available.

View Article and Find Full Text PDF

. Craniospinal compliance (CC) is an important metric for the characterization of space-occupying neurological pathologies. CC is obtained using invasive procedures that carry risks for the patients.

View Article and Find Full Text PDF

Monitoring intracranial pressure (ICP) and craniospinal compliance (CC) is frequently required in the treatment of patients suffering from craniospinal diseases. However, current approaches are invasive and cannot provide continuous monitoring of CC. Dynamic exchange of blood and cerebrospinal fluid (CSF) between cranial and spinal compartments due to cardiac action transiently modulates the geometry and dielectric properties of the brain.

View Article and Find Full Text PDF

This study investigates the absorption of the induced E-field in homogeneous biological tissue exposed to highly localized field sources in proximity of the body, such as the charged tips of antennas, where E-field coupling dominates. These conditions are relevant for compliance testing of modern mobile phones where exposure is evaluated at small separation between radiators and the body. We derive an approximation that characterizes the decay of the induced E-field in the tissue as a function of distance.

View Article and Find Full Text PDF

Objective: The clinical management of several neurological disorders benefits from the assessment of intracranial pressure and craniospinal compliance. However, the associated procedures are invasive in nature. Here, we aimed to assess whether naturally occurring periodic changes in the dielectric properties of the head could serve as the basis for deriving surrogates of craniospinal compliance noninvasively.

View Article and Find Full Text PDF

We describe a robust system for laser-driven narrowband terahertz generation with high conversion efficiency in periodically poled Lithium Niobate (PPLN). In the multi-stage terahertz generation system, the pump pulse is recycled after each PPLN stage for further terahertz generation. By out-coupling the terahertz radiation generated in each stage, extra absorption is circumvented and effective interaction length is increased.

View Article and Find Full Text PDF

Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radio-frequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the 6D-phase-space of ultrashort electron bunches.

View Article and Find Full Text PDF

Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light-matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. In this work, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses.

View Article and Find Full Text PDF

Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computational experiment.

View Article and Find Full Text PDF

Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativistic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns.

View Article and Find Full Text PDF

The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m(-1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures.

View Article and Find Full Text PDF

Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods.

View Article and Find Full Text PDF

Femtosecond ultrabright electron sources with spatially structured emission are an enabling technology for free-electron lasers, compact coherent X-ray sources, electron diffractive imaging, and attosecond science. In this work, we report the design, modeling, fabrication, and experimental characterization of a novel ultrafast optical field emission cathode comprised of a large (>100,000 tips), dense (4.6 million tips·cm(-2)), and highly uniform (<1 nm tip radius deviation) array of nanosharp high-aspect-ratio silicon columns.

View Article and Find Full Text PDF

We numerically investigate the acceleration and bunch compression capabilities of 20 mJ, 0.6 THz-centered coherent terahertz pulses in optimized metallic dielectric-loaded cylindrical waveguides. In particular, we theoretically demonstrate the acceleration of 1.

View Article and Find Full Text PDF

A new boundary condition is introduced to calculate the effective impedance matrix of semi-infinite periodic structures such as photonic crystals and metamaterials, which leads to a reduction of the solution space. The obtained effective impedance matrix allows one to relate a matrix to a PC, which includes all of its properties in terms of reflection from its interface. For one-dimensional photonic crystals or multilayer films, it is shown that a closed-form equation can be found for the effective impedance.

View Article and Find Full Text PDF