98%
921
2 minutes
20
As the size and complexity of network simulations accessible to computational neuroscience grows, new avenues open for research into extracellularly recorded electric signals. Biophysically detailed simulations permit the identification of the biological origins of the different components of recorded signals, the evaluation of signal sensitivity to different anatomical, physiological, and geometric factors, and selection of recording parameters to maximize the signal information content. Simultaneously, virtual extracellular signals produced by these networks may become important metrics for neuro-simulation validation. To enable efficient calculation of extracellular signals from large neural network simulations, we have developed BlueRecording, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. In particular, we implement a general form of the reciprocity theorem, which is capable of handling non-dipolar current sources, such as may be found in long axons and recordings close to the current source, as well as complex tissue anatomy, dielectric heterogeneity, and electrode geometries. To our knowledge, this is the first application of this generalized (i.e., non-dipolar) reciprocity-based approach to simulate EEG recordings. We use these tools to calculate extracellular signals from an in silico model of the rat somatosensory cortex and hippocampus and to study signal contribution differences between regions and cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101670 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1013023 | DOI Listing |
EMBO Rep
September 2025
Max Planck Unit for the Science of Pathogens, Berlin, D-10117, Germany.
The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.
View Article and Find Full Text PDFBone
September 2025
Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, 594-1101, Japan. Electronic address:
Hypophosphatasia (HPP) is caused by inactivating variants of ALPL, the gene encoding tissue non-specific alkaline phosphatase (TNSALP). In order to deepen our understanding of the pathogenic mechanisms of HPP, we herein generated ALPL-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene deletion to an iPS clone derived from a healthy subject. We analyzed two ALPL-KO clones, one ALPL-hetero KO clone, and a control clone isogenic except for ALPL.
View Article and Find Full Text PDFCell Chem Biol
September 2025
iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio
Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Department of Ophthalmology, Hebei Medical University, NO. 361 Zhongshan East Road, Changan District, Shijiazhuang City, Hebei Province, China; Department of Ophthalmology, Hebei General Hospital, NO. 348 Heping West Road, Xinhua District, Shijiazhuang City, Hebei Province, China. Electronic address
Diabetic retinopathy (DR) is among the most prevalent complications linked to advanced diabetes. Capillary Basement membrane (CBM) thickening is an early clinical manifestation in DR, and Laminin α 1 (LAMA1) is one of the main extracellular matrix components involved in CBM formation. Dapagliflozin (DAPA) has demonstrated efficacy in ameliorating DR.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Fysikgränd 3, Göteborg 41296, Sweden.
The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.
View Article and Find Full Text PDF