Integrating artificial intelligence (AI) in healthcare has sparked innovation but exposed vulnerabilities in regulatory oversight. Unregulated "shadow" AI systems, operating outside formal frameworks, pose risks such as algorithmic drift, bias, and disparities. The Comprehensive Algorithmic Oversight and Stewardship (CAOS) Framework addresses these challenges, combining risk assessments, data protection, and equity-focused methodologies to ensure responsible AI implementation.
View Article and Find Full Text PDFSpaceflight presents unique challenges to ocular health which must be addressed when considering future long-term missions to Mars and beyond, specifically with increased risk to the anterior segment of the eye. While the posterior segment has been heavily researched via examinations with Heidelberg's Spectralis Optical Coherence Tomography (OCT)2 Module aboard the International Space Station (ISS), evaluation of the anterior segment is not as extensively performed. Despite the capabilities of the Spectralis, which allows for anterior segment imaging via the Anterior Segment Module (ASM), transforming the OCT into an Anterior Segment OCT (AS-OCT), there is limited information available regarding anterior segment effects due to microgravity and spaceflight.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2025
Exposure to microgravity causes rapid bone loss and muscle atrophy, posing serious challenges for long-duration spaceflight. In response, NASA developed countermeasures such as Lower Body Negative Pressure (LBNP) to simulate gravitational loading on astronauts' lower extremities. LBNP, often combined with exercise, has proven effective in mitigating musculoskeletal degradation during bed rest analogs.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2025
Ocular health is critical for overall astronaut health requirements given its essential role for mission performance and safety. The ocular surface is a vital structure to the visual system and is essential for ocular protection and the refraction of light for focused vision. Data from the 2024 NASA Lifetime Surveillance of Astronaut Health identified that Space Shuttle and International Space Station (ISS) astronauts (N = 257) queried during post-flight eye exams reported symptoms of eye irritation (34 %), dry eyes (14 %), and foreign body sensation (21 %).
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2025
Parabolic flight serves as an important terrestrial analog to study acute physiological changes in microgravity without the need for space travel. During a parabolic flight, alternating hypergravity and microgravity phases, lasting up to 40 seconds, enable research into ophthalmic changes. In this review, we discuss the application of parabolic flight as a platform to study microgravity-related changes that might impact ophthalmology including intraocular pressure, intracranial pressure, choroidal blood flow, and modified eye movement patterns.
View Article and Find Full Text PDFSpaceflight-associated dry eye syndrome (SADES) has been reported among astronauts during both International Space Station (ISS) and Space Transportation System (STS) missions. As future missions extend beyond low Earth orbit, the physiological challenges of spaceflight include microgravity, radiation, and environmental stressors, which may further exacerbate the development of ocular surface disease. A deeper understanding of the underlying pathophysiology, along with the exploration of innovative countermeasures, is critical.
View Article and Find Full Text PDFIntroduction: With future manned missions that extend beyond low Earth orbit, it would be wise to anticipate all risks to astronaut health, including those relevant to ophthalmology and the ocular surface. Corneal edema has been documented among mice experiments conducted onboard the Space Transportation System mission, STS-133, owing to increased stress response gene expression.
Methods: A targeted, relevant search of the literature on topics relating to ocular surface and spaceflight was conducted with scholarly databases PubMed, Web of Science, and Embase from inception to July 2024.
Long-duration spaceflight missions (including the International Space Station [ISS]) are in one of the most remote and harsh environments humans live and work in. Medical emergencies in space are even more complicated in an already high-risk environment. Despite training, ISS crewmembers face many challenges in diagnosing and managing disease with limited diagnostic capability and equipment on the ISS, restricted medication availability, delayed access to medical professionals; and the latency of space missions.
View Article and Find Full Text PDFExtended space missions significantly affect astronaut health, leading to various systemic and ocular conditions. The ocular surface and cardiovascular system are particularly susceptible to the unique environment within the spacecraft. This can often lead to pathologic issues such as radiation-induced accelerated atherosclerosis (RIAA), spaceflight-associated neuro-ocular syndrome (SANS) and spaceflight-associated dry eye syndrome (SADES).
View Article and Find Full Text PDFNon-invasive intracranial pressure (ICP) monitoring can help clinicians safely and efficiently monitor spaceflight-associated neuro-ocular syndrome (SANS), idiopathic intracranial hypertension, and traumatic brain injury in astronauts. Current invasive ICP measurement techniques are unsuitable for austere environments like spaceflight. In this study, we explore the potential of plasma-derived cell-free RNA (cfRNA) biomarkers as non-invasive alternatives to cerebrospinal fluid (CSF) markers for ICP assessment.
View Article and Find Full Text PDFThere is a high prevalence of dry eye-related symptoms among astronauts during spaceflight. We propose naming this phenomenon: Spaceflight Associated Dry Eye Syndrome (SADES). In this study, we review the potential mechanisms of dry eye in the spaceflight environment, categorizing them into external (radiation, environmental hazards) and microgravity-related (meibum outflow) mechanisms.
View Article and Find Full Text PDFArtificial intelligence (AI) is reshaping precision medicine by revealing diagnostic links between ocular biomarkers and systemic musculoskeletal disorders. This review synthesizes clinical evidence on the associations between optical coherence tomography (OCT)-derived parameters, such as retinal nerve fiber layer (RNFL) thinning and choroidal thickness, and conditions including osteoporosis, cervical spine instability, and inflammatory arthritis. The findings, based on an analysis of studies that integrate AI with ocular and musculoskeletal imaging, highlight consistent correlations between ocular microstructural changes and systemic degenerative pathologies.
View Article and Find Full Text PDFPurpose: To evaluate the longitudinal safety outcomes of incorrect intraocular lens (IOL) implantation using a standardized cataract surgery operating standard operating procedure (SOP) devised at a tertiary referral eye center. This evaluation represents a critical but underrepresented topic in ophthalmic literature.
Methods: This was a quality improvement, retrospective analysis, and description of the Healthcare Failure Mode Effect and Analysis (HFMEA) and resultant SOP implemented in 2018 following incorrect IOL events.
Bioengineering (Basel)
May 2025
Artificial intelligence (AI) is revolutionizing the field of orthopedic bioengineering by increasing diagnostic accuracy and surgical precision and improving patient outcomes. This review highlights using AI for orthopedics in preoperative planning, intraoperative robotics, smart implants, and bone regeneration. AI-powered imaging, automated 3D anatomical modeling, and robotic-assisted surgery have dramatically changed orthopedic practices.
View Article and Find Full Text PDFJ Imaging Inform Med
May 2025
Generative adversarial networks (GANs), introduced by Ian Goodfellow in 2014, have revolutionized adversarial machine learning, particularly in data synthesis. This manuscript explores their application in ophthalmic diagnostics, addressing the scarcity of annotated datasets and the need for improved early disease detection. By leveraging GAN architectures, the goal is to enhance the quality of synthetic ophthalmic images, ultimately improving diagnostic algorithm training.
View Article and Find Full Text PDFThe tear film is a complex structure with rich interactions with the human body. A growing body of evidence suggests that measuring changes in protein, lipid, or other metabolite concentration in the tear film can be used to help detect disease. Particularly in the era of precision medicine, the tear film serves as a promising source of non-invasive insights into systemic health for early diagnosis and treatment.
View Article and Find Full Text PDFThe rapid evolution of deep learning has dramatically enhanced the field of medical image segmentation, leading to the development of models with unprecedented accuracy in analyzing complex medical images. Deep learning-based segmentation holds significant promise for advancing clinical care and enhancing the precision of medical interventions. However, these models' high computational demand and complexity present significant barriers to their application in resource-constrained clinical settings.
View Article and Find Full Text PDFExpert Rev Med Devices
June 2025
Human space exploration presents an unparalleled opportunity to study life in extreme environments-but it also exposes astronauts to physiological stressors that jeopardize key systems like vision. Corneal health, essential for maintaining precise visual acuity, is threatened by microgravity-induced fluid shifts, cosmic radiation, and the confined nature of spacecraft living environments. These conditions elevate the risk of corneal abrasions, infections, and structural damage.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
May 2025
J Orthop Surg Res
April 2025
Orthopedic trauma remains a critical challenge in modern healthcare, often resulting in severe mobility limitations, acute pain, and delayed recovery. Conventional rehabilitation techniques, though effective, fail to address the individualized, high-precision interventions needed for musculoskeletal injuries like fractures, joint instability, ligament tears, and muscular atrophy. Virtual reality (VR) technologies, such as Apple Vision Pro and HTC Vive Pro, offer a transformative approach by enhancing diagnostic precision, rehabilitation effectiveness, and patient engagement through interactive, immersive environments that improve clinical outcomes.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
August 2025
Purpose: Generative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis.
View Article and Find Full Text PDFThe Bruch's membrane (BM) is an acellular, extracellular matrix that lies between the choroid and retinal pigment epithelium (RPE). The BM plays a critical role in retinal health, performing various functions including biomolecule diffusion and RPE support. The BM is also involved in many retinal diseases, and insights into BM dysfunction allow for further understanding of the pathophysiology of various chorioretinal pathologies.
View Article and Find Full Text PDFEur J Ophthalmol
July 2025
Refractive error is among the leading causes of visual impairment globally. The diagnosis and management of refractive error has traditionally relied on comprehensive eye examinations by eye care professionals, but access to these specialized services has remained limited in many areas of the world. Given this, artificial intelligence (AI) has shown immense potential in transforming the diagnosis and management of refractive error.
View Article and Find Full Text PDF