Publications by authors named "Jizhuang Wang"

Swarming behavior often enables systems to achieve intelligent responses that surpass the capabilities of individual components, allowing for complex tasks to be accomplished. Despite significant advances in active swarm research, achieving precise control over swarm responsiveness remains a challenge. In this study, a light-controlled chemical communication-mediated swarming system through integrating the ion-exchange and light decomposition reactions to emulate predator-prey interactions is designed.

View Article and Find Full Text PDF

Electrophoretic-driven micro/nanomotors (EMNMs) offer great potential for biomedical applications due to their design flexibility. However, they face challenges in high-salt environments, where ionic quenching disrupts propulsion by collapsing the electrical double layer. This study introduces a versatile strategy by coating EMNMs with a MOF porous scaffold (ZIF-8), which acts as ion-conductive channels that replace the electrical Debye layers and support propulsion in high-salt solutions.

View Article and Find Full Text PDF

Diabetic wounds are a leading cause of disability and mortality in patients with diabetes, and persistent low-grade inflammation plays a significant role in their pathogenesis. Methylglyoxal (MGO), an active product of glucose metabolism, often induces chronic inflammation and is considered a major risk factor in the healing of diabetic wounds. Efferocytosis, the process by which macrophages clear apoptotic cells, is crucial for terminating the inflammatory response and tissue repair.

View Article and Find Full Text PDF

Improving the accuracy of in vitro three-dimensional (3D) cellular cultures more closely replicates the in vivo microenvironment by mimicking the complex tissue structures, enhancing cell-cell interactions, and increasing differentiation potential along with functional capabilities. Natural materials aid in cell adhesion and proliferation within the 3D matrix, providing a more realistic growth environment. Oxygen availability is also critical for cell survival in 3D cultures, as a lack of oxygen can impede proliferation, reduce functionality, and ultimately result in cell death.

View Article and Find Full Text PDF

Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.

View Article and Find Full Text PDF

Gouty arthritis is one of the most common forms of inflammatory arthritis and has brought a significant burden on patients and society. Current strategies for managing gout primarily focus on long-term urate-lowering therapy. With the rapid advancement of point-of-care testing (POCT) technology, continuous monitoring of gout-related biomarkers like uric acid (UA) or inflammatory cytokines can provide rapid and personalized diagnosis for gout management.

View Article and Find Full Text PDF

The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how dexmedetomidine (Dex) enhances autophagy in heart cells during sepsis by examining the role of exosomes and microRNAs.
  • Researchers collected plasma exosomes from rats with sepsis to analyze their effects on cardiomyocytes, focusing on the expression of miR-29b-3p, which was found to be higher in Dex-treated exosomes.
  • The results indicated that Dex not only promotes autophagy in heart cells but also helps protect against cell death by influencing miR-29b-3p levels in exosomes, suggesting potential therapeutic targets for sepsis-related heart injury.
View Article and Find Full Text PDF

Nanocarriers are frequently used for drug delivery due to their large surface area, biocompatibility, and photothermal effects. However, they face the problem of premature drug leakage during drug transport. To address this challenge, we developed near-infrared light (NIR)-responsive hollow magnetic nanocarriers (HMC) by incorporating a chitosan-based molecular valve onto hollow magnetic nanocarriers (CHMC) to enable NIR-triggered drug release.

View Article and Find Full Text PDF
Article Synopsis
  • Full-thickness wounds delay healing and cause scarring, but using adipose-derived stem cells (ADSCs) with a dermal regeneration template (DRT) may improve outcomes.
  • Researchers isolated and labeled ADSCs, then applied them to a DRT before testing the combination on full-thickness wounds in pigs, comparing it with other treatments.
  • Results showed that the ADSC-DRT group had significantly better healing, with more ADSCs present and improved collagen deposition, indicating that this method could enhance wound healing and reduce scarring.
View Article and Find Full Text PDF

Immunotherapy can enhance primary tumor efficacy, restrict distant growth, and combat lung metastasis. Unfortunately, it remains challenging to effectively activate the immune response. Here, tertiary butyl, methoxy, and triphenylamine (TPA) were utilized as electron donors to develop multifunctional photosensitizers (PSs).

View Article and Find Full Text PDF

Ferroptosis, driven by an imbalance in redox homeostasis, has recently been identified to regulate macrophage function and inflammatory responses. SENP3 is a redox-sensitive de-SUMOylation protease that plays an important role in macrophage function. However, doubt remains on whether SENP3 and SUMOylation regulate macrophage ferroptosis.

View Article and Find Full Text PDF

Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs.

View Article and Find Full Text PDF

Complex micro/nanorobots may be constructed by integrating several independent, controlled nanomotors for high degrees of freedom of maneuvering and manipulation. However, designing nanomotors with distinctive responses to the same global stimuli is challenging due to the nanomotors' simple structure and limited material composition. In this work, we demonstrate that a nanomotor can be designed with the same principles of electronic circuits, where the motion of semiconductor particles can be controlled with synchronized electric and optical signals.

View Article and Find Full Text PDF

Light-driven micro/nanorobots (LMNRs) are tiny, untethered machines with great potential in fields like precision medicine, nano manufacturing, and various other domains. However, their practicality hinges on developing light-manipulation strategies that combine versatile functionalities, flexible design options, and precise controllability. Our study introduces an innovative approach to construct micro/nanorobots (MNRs) by utilizing micro/nanomotors as fundamental building blocks.

View Article and Find Full Text PDF

Optically controlled neuromodulation is a promising approach for basic research of neural circuits and the clinical treatment of neurological diseases. However, developing a non-invasive and well-controllable system to deliver accurate and effective neural stimulation is challenging. Micro/nanorobots have shown great potential in various biomedical applications because of their precise controllability.

View Article and Find Full Text PDF

Realizing high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region is challenging and valuable for luminescent material, especially for thermally activated delay fluorescence (TADF) material. In this work, we report two achiral cyclic trinuclear Au(I) complexes, Au (4-Clpyrazolate) and Au (4-Brpyrazolate) (denoted as Cl-Au and Br-Au), obtained through the reaction of 4-chloro-1H-pyrazole and 4-bromo-1H-pyrazole with Au(I) salts, respectively. Both Cl-Au and Br-Au exhibit TADF with high PLQY (>70 %) in the NIR I (700-900 nm) (λ = 720 nm) region, exceeding other NIR-TADF emitters in the solid state.

View Article and Find Full Text PDF

Severe burns induce a catecholamine surge, causing severe damage to the organism and raising the possibility of multisystem organ failure. Few strategies are generally acceptable to reduce catecholamine surge and organ injury post-burn. We have previously shown that histamine can amplify the catecholamine surge.

View Article and Find Full Text PDF

Incorporating passive radiative cooling into textiles is an effective way to improve individual personalized thermophysiological comfort for the human body. Based on radiative cooling textile design, rational functionalization further facilitates practical applications, especially for medical protective products with customized requirements. Herein, we present a hierarchical polyurethane/metal-organic framework (MOF) composite nanofiber membrane with an integrated radiative cooling effect and photocatalytic antibacterial property.

View Article and Find Full Text PDF

Emerging evidence suggests that metabolic adaptation is a vital hallmark and prerequisite for macrophage phenotype transition. Pyruvate kinase M2 (PKM2) is an essential molecular determinant of metabolic adaptions in pro-inflammatory macrophages. Post-translational modifications play a central role in the regulation of PKM2.

View Article and Find Full Text PDF

In recent years, Photobiomodulation (PBM) has gained prevalence as a kind of physical therapy for wound healing, however, concerning specific cellular mechanisms induced by PBM remains uncertain. The objective of this study is to evaluate the mechanisms of action of PBM (632.8 nm) on angiogenesis in wound healing in vitro and vivo.

View Article and Find Full Text PDF

Micro/nanoplastic (MNP) contamination in nonmarine waters has evolved into a notable ecotoxicological threat to the global ecosystem. However, existing strategies for MNP removal are typically limited to chemical flocculation or physical filtering that often fails to decontaminate plastic particulates with ultrasmall sizes or ultralow concentrations. Here, we report a self-driven magnetorobot comprising magnetizable ion-exchange resin sphere that can be used to dynamically remove or separate MNPs from nonmarine waters.

View Article and Find Full Text PDF

Purpose: Although undergoing conventional chemotherapy significantly improves the prognosis of Osteosarcoma, chemoresistance and failure of therapy is still a significant challenge. Furthermore, conventional chemotherapy, like doxorubicin, would upregulate the expression of programmed death-ligand 1 (PD-L1) which caused an immunosuppressive microenvironment and unsatisfied treatment result in Osteosarcoma. Thus, it is urgent to explore a strategy to overcome this disadvantage.

View Article and Find Full Text PDF

Metastasis and drug resistance are the leading causes of poor prognosis in patients with osteosarcoma. Identifying the relevant factors that drive metastasis and drug resistance is the key to improving the therapeutic outcome of osteosarcoma. Here, we reported that autophagy was highly activated in metastatic osteosarcoma.

View Article and Find Full Text PDF

Severe burns develop a catecholamine surge, inducing severe damage to the organism, raising the possibility of multisystem organ failure, and even death. The mechanisms of catecholamine surge have not been fully elucidated, and few strategies are generally acceptable to reduce catecholamine surge postburn. Thus, it is valuable to investigate the underlying mechanisms of catecholamine surge postburn to develop targeted interventions to attenuate it.

View Article and Find Full Text PDF