Microorganisms
June 2025
Laccase, a member of the blue multicopper oxidase family, is widely distributed across diverse taxonomic groups, including fungi, bacteria, plants, and insects. This enzyme drives biocatalytic processes through the oxidation of phenolic compounds, aromatic amines, and lignin derivatives, underpinning its significant potential in the food industry, cosmetics, and environmental remediation. However, wild-type laccases face critical limitations, such as low catalytic efficiency, insufficient expression yields, and poor stability.
View Article and Find Full Text PDFRaceway pond systems face inherent challenges in achieving optimal biomass productivity due to limitations in vertical mixing efficiency and uneven light distribution, compounded by the intrinsic dilute nature of phototrophic cultures. The combination of automated light-supplemented mixers and electric field treatment introduces a promising strategy to enhance raceway pond gas‒liquid mass transfer, improve microalgae biomass production, and increase carbon fixation. Computational fluid dynamics simulations identified an optimal mixing configuration employing a 75° inclined blade rotating counterclockwise at 300 rpm, which reduced dead zones from approximately 15.
View Article and Find Full Text PDFFlavor compounds are key determinants of food sensory quality, originating from natural sources, processing, or artificial additives. Although physical and chemical methods can effectively enhance food flavor, microbial fermentation and enzyme catalysis technology possess good potential in food flavor regulation due to their mild reaction conditions and high safety. In addition, the high efficiency and specificity of enzymes help to shorten the production cycle and accurately regulate food flavor.
View Article and Find Full Text PDFAs one of the non-thermal technologies, the pulsed magnetic field (PMF) has increasingly attracted attention for its application in food microbial inactivation. In this study, a proteomic analysis was conducted to elucidate the molecular mechanism underlying the inactivation of by a PMF. A total of 79 proteins, comprising 65 upregulated and 14 downregulated proteins, were successfully identified as differentially expressed proteins (DEPs, >1.
View Article and Find Full Text PDFMaterials (Basel)
May 2025
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles, mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study systematically evaluates their enhancing effects on lipase catalytic performance. Additionally, solvent engineering strategies, encompassing the introduction of organic solvents, supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the enzymatic catalytic process.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2025
Zearalenone (ZEN) is a common mycotoxin widely found in food crops such as corn. The toxicity of ZEN is manifested as multiple hazards to reproduction, genes, cells, and immune systems. Long-term exposure may have a serious impact on health, so it has received extensive attention due to its potential harm to human and animal health.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) of nuclear pore complex (NPC) with nuclear transport proteins (NTPs) via intrinsically disordered regions (IDRs) plays a crucial role in the nucleocytoplasmic transport. The development of efficient targeted delivery systems based on LLPS has attracted widespread attention. Here, we developed nanocarriers of casein peptides, a natural intrinsically disordered proteins (IDPs), modified with fatty acids of different alkyl chains (C10-C18) and decorated by shellac for highly effective drug delivery and cancer therapy.
View Article and Find Full Text PDFWith global climate warming, enhancing the heat stress tolerance of rice seeds is critical for ensuring crop yields and maintaining global food security. 2,4-Epibrassionolide (EBR) has been shown to effectively alleviate the adverse effects of heat stress on rice seed germination, but its mitigation mechanism has not been fully clarified. In this experiment, exogenous EBR was used as a seed priming agent.
View Article and Find Full Text PDFIn this study, Cu-chelated magnetic silicon dioxide nanoparticles were synthesized as carriers for laccase immobilization. The prepared magnetic immobilized laccase was applied in the clarification of sugarcane juice. The optimal conditions for the clarification of sugarcane juice with magnetic immobilized laccase in a shake flask were determined to be as follows: a temperature of 35 °C, pH of 5.
View Article and Find Full Text PDFIn order to analyze the physiological regulation mechanisms associated with exogenous melatonin on rice blast, this study treated rice seedlings with different concentrations of melatonin (0, 20, 100, and 500 µmol/L) in order to investigate the growth characteristics, root morphology, superoxide dismutase (SOD) activity, peroxidase (POD) activity, catalase (CAT) activity, malondialdehyde (MDA) content, hydrogen peroxide (HO) content, and soluble protein content of rice seedlings. The results indicated that 100 µmol/L of melatonin exhibited a significant effect, improving the growth and antioxidant capacity of rice seedlings under rice blast fungus infection. The disease resistance level of rice seedlings against rice blast significantly decreased by 31.
View Article and Find Full Text PDFBackground: Catechol (CC), a prevalent phenolic compound, is a byproduct in various agricultural, chemical, and industrial processes. CC detection is crucial for safeguarding water quality and plays a pivotal role in enhancing the overall quality of life of individuals. Electrochemical biosensors exhibit rapid responses, have small sizes, and can be used for real-time monitoring.
View Article and Find Full Text PDFThe augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation.
View Article and Find Full Text PDFImmobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking.
View Article and Find Full Text PDFUltrasound has been widely used as a green and efficient non-thermal processing technique to assist with enzymatic hydrolysis. Compared with traditional enzymatic hydrolysis, ultrasonic-pretreatment-assisted enzymatic hydrolysis can significantly improve the efficiency of enzymatic hydrolysis and enhance the biological activity of substrates. At present, this technology is mainly used for the extraction of bioactive substances and the degradation of biological macromolecules.
View Article and Find Full Text PDFRice is an important food crop. Rice seedlings are mainly composed of root, coleoptile, mesocotyl and euphylla. The elongation of coleoptile and mesocotyl promotes the emergence of rice seedlings.
View Article and Find Full Text PDFGlobally, the release of acrylonitrile-butadienestyrene (ABS) wastewater from numerous industries is a serious concern. Recently, oil-rich filamentous algae Tribonema sp has been grown utilizing toxic but nutrient-rich ABS effluent. Here, Tribonema sp.
View Article and Find Full Text PDFwe optimized medium components for the production of ergosterol peroxide (EP) by Paecilomyces cicadae based on a mono-factor experiment, a uniform design, and a non-linear regression analysis. The maximum EP yield achieved was 256 μg/L, which was increased by 5 folds compared with that before the optimization. Structured Monod model, Andrews model, Contois model, and Aibe model were developed to describe the effects of viscosity inhibition, substrate, and production on biomass growth.
View Article and Find Full Text PDFThe weak magnetic field (MF) intervention on the semi-continuous system of filamentous algae Tribonema sp. during outdoor cultivation was investigated using starch wastewater. Results show that except for winter, MF in other seasons can effectively improve the algal biomass yield and oil productivity.
View Article and Find Full Text PDFJ Food Sci Technol
August 2021
The effects of PMF (5-7 T, 5-30 pulses) on enzyme activity, pH, titratable acidity, soluble solids, color, ascorbic acid, total phenols and antioxidant activity (DPPH radical scavenging activity) of cloudy apple juice were evaluated. PMF inhibited activities of polyphenoloxidase (PPO), peroxidase (POD) and pectinmethylesterase (PME), but PPO was more sensitive to PMF than POD and PME. At the intensity of 6 T with 15 pulses, PPO and POD both exhibited the lowest residual activity (53.
View Article and Find Full Text PDFFood Res Int
July 2020
Pulsed magnetic field (PMF) is an emerging non-thermal decontamination technology. The lack of research on microbial inactivation mechanisms restricts the wide application of PMF. In this study the effect of PMF on the gene expression level of Listeria monocytogenes (L.
View Article and Find Full Text PDFEffects of high-humidity hot air impingement blanching (HHAIB) under different times (30, 60, 90, 120, 150, 180, 210, and 240s) on drying characteristics and quality attributes of red peppers in terms of surface colour, red pigment content, microstructure and texture were investigated. Results showed that polyphenol oxidase (PPO) residual activity of the samples decreased with increasing blanching time; it was decreased to 7% after 120s. A first-order fraction model described PPO inactivation well.
View Article and Find Full Text PDFThe effect of Rhodotorula mucilaginosa in combination with phytic acid (PA) on blue mold decay and patulin contamination of apples was investigated. Results from this study show that different concentrations of PA were effective in reducing the disease incidence of apples and that PA at concentration of 4 μmol/mL, decreased the incidence of blue mold decay in apples from 86.1 to 62.
View Article and Find Full Text PDFBackground: Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media.
View Article and Find Full Text PDF