Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With global climate warming, enhancing the heat stress tolerance of rice seeds is critical for ensuring crop yields and maintaining global food security. 2,4-Epibrassionolide (EBR) has been shown to effectively alleviate the adverse effects of heat stress on rice seed germination, but its mitigation mechanism has not been fully clarified. In this experiment, exogenous EBR was used as a seed priming agent. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondialdehyde (MDA), soluble protein contents, and plant hormone levels were measured during rice seed germination under heat stress (38 °C). We constructed a cDNA library for transcriptome sequencing analysis. The results showed that exogenous EBR could effectively alleviate the effect of heat stress on rice seeds by enhancing SOD, POD, and CAT enzyme activity; reducing the MDA content; and increasing the soluble protein content. Additionally, exogenous EBR increases the levels of GA and IAA while decreasing the ABA content. According to a transcriptomic analysis, exogenous EBR can induce the expression of key genes involved in GA, IAA, and ABA hormone biosynthesis and metabolism, regulating GA-, IAA-, ABA-, and HO-mediated signaling pathways to promote the germination of rice seeds under heat stress. This study provides new insights into the application of rice seed priming techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851696PMC
http://dx.doi.org/10.3390/antiox14020242DOI Listing

Publication Analysis

Top Keywords

heat stress
20
exogenous ebr
16
seed priming
12
seed germination
12
rice seeds
12
rice seed
12
germination heat
8
tolerance rice
8
plant hormone
8
signaling pathways
8

Similar Publications

We evaluated the systemic cardiovascular and carotid baroreflex support of arterial pressure during recovery from whole-body, passive heating in young and older adults. Supine mean arterial pressure (MAP), cardiac output (Q; acetylene washin), systemic vascular conductance (SVC), heart rate (HR), and stroke volume (SV) were evaluated in 16 young (8F, 18-29 years) and nine older (6F, 61-73 years) adults at normothermic baseline and for 60-min passive heating and 120-min normothermic recovery. Externally applied neck pressure was used to evaluate HR, brachial vascular conductance, and MAP responses to carotid baroreceptor unloading.

View Article and Find Full Text PDF

Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.

View Article and Find Full Text PDF

Genome-wide identification and functional characterization of rapid alkalinization factor 6 as a key peptide regulator of abiotic stress tolerance in Tartary buckwheat.

Plant Sci

September 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.

View Article and Find Full Text PDF

Owing to the anti-inflammatory and anti-oxidant benefits of Saccharomyces cerevisiae (SC), 20 mature male albino rats, assigned into four groups (A-D; n = 5), were used to investigate its ameliorative effects on heat stress-induced testicular and humoral alterations. Group A rats were neither treated with SC nor exposed to heat [-SC, -HS]. Group B rats were treated with 7 mg/kg of SC, but were not exposed to heat [+SC, -HS].

View Article and Find Full Text PDF

Genome-wide analysis of WRKY transcription factors in Zygophyllum xanthoxylum and the role of ZxWRKY4 in response to high temperature.

Plant Physiol Biochem

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China. Electronic address:

As global climate change intensifies heat stress and threatens food security, exploring and utilizing valuable genetic resources are crucial for crop improvement. Zygophyllum xanthoxylum, a xerophyte adapted to extreme desert conditions, is a valuable model for excavating thermotolerance genes. This species exhibits differential expression of numerous WRKY genes under heat treatments.

View Article and Find Full Text PDF