A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Magnetic/electric field intervention on oil-rich filamentous algae production in the application of acrylonitrile butadiene styrene based wastewater treatment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Globally, the release of acrylonitrile-butadienestyrene (ABS) wastewater from numerous industries is a serious concern. Recently, oil-rich filamentous algae Tribonema sp has been grown utilizing toxic but nutrient-rich ABS effluent. Here, Tribonema sp. was cultivated under intervention of different magneto-electric combinatory fields (MCFs) (control, 0.6 V/cm, 1 h/d-1.2 V/cm, 1 h/d-0.6 V/cm, and 1 h/d-1.2 V/cm). Results showed MCF (1 h/d-0.6 V/cm) intervention increased the biomass by 9.7% (2.4 g/L) combined with high removal efficiencies (95% and 99%) of ammonium nitrogen and total phosphorus. The chemical oxygen demand (COD) removal rate increased to 82%, 6% higher than the control. Moreover, MCF of 1 h/d-0.6 V/cm significantly increased lipid and carbohydrate by 7.71% and 4.73% respectively. MCF increased premium fatty acid content such as palmitic acid (C16:0), myristic acid (C14: 0), and hexadecenoic acid (C16:1). MCF intervention also supported a diverse microbial flora, offering a favorable solution for ABS wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127272DOI Listing

Publication Analysis

Top Keywords

oil-rich filamentous
8
filamentous algae
8
wastewater treatment
8
abs wastewater
8
mcf 1 h/d-06 v/cm
8
magnetic/electric field
4
intervention
4
field intervention
4
intervention oil-rich
4
algae production
4

Similar Publications