Background: Transportation insecurity is a known barrier to accessing eye care and is associated with poorer visual outcomes for patients. However, its mention is seldom captured in structured data fields in electronic health records, limiting efforts to identify and support affected patients. Free-text clinical documentation may more efficiently capture information on transportation-related challenges than structured data.
View Article and Find Full Text PDFThe hydrogen oxidation reaction (HOR) shows fast kinetics in proton exchange membrane fuel cells (PEMFCs), and has not drawn intense attention. Here, we propose a tandem electrocatalysis concept, decoupling HOR on two independent active sites for accelerated kinetics. As a proof-of-concept application, a Ru-based tandem HOR catalyst is designed, with Ru nanoclusters decorated with Pt single atoms.
View Article and Find Full Text PDFPurpose: To assess the association between loss to follow-up (LTFU) and risk of incident blindness among a national registry cohort of patients with primary open-angle glaucoma (POAG).
Design: Retrospective longitudinal cohort study.
Participants: Patients with a POAG diagnosis who had at least 2 visual acuity (VA) measurements documented in the IRIS® Registry (Intelligent Research in Sight) in both 2014 and 2019.
Introduction: Appointment "no-shows" (NS) are a significant issue for glaucoma patients, potentially leading to loss to follow-up, disease progression, and irreversible vision loss. This study investigates sociodemographic and clinical risk factors associated with NS at a tertiary academic eye center.
Methods: A retrospective review of 100 glaucoma patients at the University of Pittsburgh Medical Center (UPMC) Vision Institute over 1 year was conducted.
Adv Mater
April 2025
To enhance the lifetime of proton exchange membrane fuel cells, developing highly durable platinum-based cathode catalysts is essential. While two degradation pathways for the cathode catalyst-carbon corrosion and electrocatalyst (platinum nanoparticles) coarsening-have been identified, current approaches to enhance its durability are limited to addressing individual degradation pathways. Herein, the study develops a core/shell-structured carbon support that is designed to afford cathode catalysts capable of simultaneously inhibiting carbon corrosion and electrocatalyst coarsening.
View Article and Find Full Text PDFPregnant people are ubiquitously exposed to endocrine-disrupting phthalates through consumer products and food. The placenta may be particularly vulnerable to the adverse effects of phthalates, with evidence from animal models suggesting impacts on placental development and vascularization. We translate this research to humans, examining gestational exposure to phthalates and phthalate replacements in relation to novel markers of chorionic plate surface vascularization.
View Article and Find Full Text PDFEnhancing the durability of carbon-supported platinum catalysts (Pt/C) for the oxygen reduction reaction remains a significant challenge in the field of proton exchange membrane fuel cells (PEMFCs), especially for catalysts with high-Pt contents. Herein, a TaO decorating strategy that is capable of effectively boosting the durability of Pt/C catalysts even with a high-Pt content of 50 wt.% is introduced.
View Article and Find Full Text PDFNat Commun
August 2024
Intermetallic compounds (IMCs) with ordered atomic structure have gained great attention as nanocatalysts for its enhanced activity and stability. Although the reliance of IMC preparation on high-temperature annealing is well known, a comprehensive understanding of the formation mechanisms of IMCs in this process is currently lacking. Here, we employ aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) to track the formation process of IMCs on carbon supports during in-situ annealing, by taking PtFe as a case study within an industry-relevant impregnation synthesis framework.
View Article and Find Full Text PDFThe lattice parameter of platinum-based intermetallic compounds (IMCs), which correlates with the intrinsic activity of the oxygen reduction reaction (ORR), can be modulated by crystal phase engineering. However, the controlled preparation of IMCs with unconventional crystal structures remains highly challenging. Here, we demonstrate the synthesis of carbon-supported PtCu-based IMC catalysts with an unconventional L1 structure by a composition-regulated strategy.
View Article and Find Full Text PDFJ Phys Chem Lett
April 2024
The fine-tuning of the geometric and electronic structures of active sites plays a crucial role in catalysis. However, the intricate entanglement between the two aspects results in a lack of interpretable design for active sites, posing a challenge in developing high-performance catalysts. Here, we find that surface reconstruction induced by phase transition in intermetallic alloys enables synergistic geometric and electronic structure modulation, creating a desired active site microenvironment for propane dehydrogenation.
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl substances (PFAS) are widely detected in pregnant women and associated with adverse outcomes related to impaired placental function. Human chorionic gonadotropin (hCG) is a dimeric glycoprotein hormone that can indicate placental toxicity.
Objectives: Our aim was to quantify the association of serum PFAS with placental hCG, measured as an intact molecule (hCG), as free alpha-() and beta-subunits (), and as a hyperglycosylated form (h-hCG), and evaluate effect measure modification by social determinants and by fetal sex.
J Am Chem Soc
April 2024
The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g.
View Article and Find Full Text PDFChem Commun (Camb)
April 2024
We introduce a straightforward, yet effective strategy to combat the performance decline of proton-exchange membrane fuel cells in low-humidity environments. Our method centers on air-oxidizing carbon supports, significantly improving proton and oxygen transport within the cathode catalyst layer.
View Article and Find Full Text PDFCarbon supported PtCo intermetallic alloys are known to be one of the most promising candidates as low-platinum oxygen reduction reaction electrocatalysts for proton-exchange-membrane fuel cells. Nevertheless, the intrinsic trade-off between particle size and ordering degree of PtCo makes it challenging to simultaneously achieve a high specific activity and a large active surface area. Here, by machine-learning-accelerated screenings from the immense configuration space, we are able to statistically quantify the impact of chemical ordering on thermodynamic stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
N-, C-, O-, S-coordinated single-metal-sites (SMSs) have garnered significant attention due to the potential for significantly enhanced catalytic capabilities resulting from charge redistribution. However, significant challenges persist in the precise design of well-defined such SMSs, and the fundamental comprehension has long been impeded in case-by-case reports using carbon materials as investigation targets. In this work, the well-defined molecular catalysts with N C -anchored SMSs, i.
View Article and Find Full Text PDFSingle-atom catalysts (SACs) have generated excitement for their potential to downsize metal particles to the atomic limit with engineerable local environments and improved catalytic reactivities and selectivities. However, successes have been limited to small-molecule transformations with little progress toward targeting complex-building reactions, such as metal-catalyzed cross-coupling. Using a supercritical carbon-dioxide-assisted protocol, we report a heterogeneous single-atom Pt-catalyzed Heck reaction, which provides the first C-C bond-forming migratory insertion on SACs.
View Article and Find Full Text PDFCarbon supported intermetallic compound nanoparticles with high activity and stability are promising cathodic catalysts for oxygen reduction reaction in proton-exchange-membrane fuel cells. However, the synthesis of intermetallic catalysts suffers from large diffusion barrier for atom ordering, resulting in low ordering degree and limited performance. We demonstrate a low-melting-point metal doping strategy for the synthesis of highly ordered L1-type M-doped PtCo (M = Ga, Pb, Sb, Cu) intermetallic catalysts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2023
In supported metal catalysts, the supports would strongly interact with the metal components instead of just acting as a carrier, which greatly affects both of their synthesis and catalytic activity, selectivity, and stability. Carbon is considered as very important but inert support and thus hard to induce strong metal-support interaction (SMSI). This mini-review highlights that sulfur-a documented poison reagent for metal catalysts-when doped in a carbon supports can induce diverse SMSI phenomenon, including electronic metal-support interaction (EMSI), classic SMSI, and reactive metal-support interaction (RMSI).
View Article and Find Full Text PDFPorous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis.
View Article and Find Full Text PDFStrategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak "non-bonding" interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO interaction that substantially elevates the population of Co sites for improved water oxidation.
View Article and Find Full Text PDFChem Commun (Camb)
February 2023
Here, we report a "critical distance" method for the synthesis of 9 kinds of sub-5 nm rhodium (Rh)-based intermetallic catalysts. Enlarging the distance between intermetallic particles on high-surface-area carbon black supports could significantly suppress the metal sintering in high-temperature annealing. The prepared RhSn intermetallic catalysts exhibited enhanced activity in catalyzing the hydrogenation of nitrobenzene.
View Article and Find Full Text PDFSupported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts.
View Article and Find Full Text PDF