Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The hydrogen oxidation reaction (HOR) shows fast kinetics in proton exchange membrane fuel cells (PEMFCs), and has not drawn intense attention. Here, we propose a tandem electrocatalysis concept, decoupling HOR on two independent active sites for accelerated kinetics. As a proof-of-concept application, a Ru-based tandem HOR catalyst is designed, with Ru nanoclusters decorated with Pt single atoms. Experimental and theoretical studies suggest that H dissociation occurs at Ru sites, and then the produced H species migrate to Pt sites followed by the desorption of H. The strong Ru-H interaction promotes the H dissociation step, while the optimum Pt-H interaction ensures the fast desorption, thereby substantially enhancing the HOR kinetics. In H-O fuel cells, this catalyst enables a peak power density of 1.91 W cm and a high anodic mass activity of 23.12 A mg at 0.9 V with an ultralow noble metal loading of 5 μg cm. This work advances the development of low-cost anode catalysts for fuel cells and provides more insight into understanding hydrogen electrocatalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284119PMC
http://dx.doi.org/10.1038/s41467-025-62160-8DOI Listing

Publication Analysis

Top Keywords

fuel cells
12
hydrogen oxidation
8
oxidation reaction
8
decoupling fast
4
fast hydrogen
4
reaction tandem
4
tandem electrocatalyst
4
electrocatalyst hydrogen
4
hor
4
reaction hor
4

Similar Publications

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

Cancer cells are exposed to diverse metabolites in the tumour microenvironment that are used to support the synthesis of nucleotides, amino acids and lipids needed for rapid cell proliferation. In some tumours, ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle. Here we identify a non-canonical route for β-OHB metabolism that bypasses the TCA cycle to generate cytosolic acetyl-CoA.

View Article and Find Full Text PDF

Flow fields (FFs) play multifaceted roles in direct methanol fuel cells (DMFC) by facilitating the transport and distribution of species, removal of products, support to the membrane electrode assembly (MEA), electrical conductivity, water, and thermal management. Therefore, the performance of DMFC is directly related to the pattern and geometry of the FF. DMFCs can generate power density of up to ≈100-300 mW cm; however, their performance is impeded by cathode flooding, CO gas bubbles formation, and mass transfer limitations.

View Article and Find Full Text PDF

Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy.

View Article and Find Full Text PDF