22 results match your criteria: "Indian Institute of Science Education and Research (IISER) Bhopal[Affiliation]"

Excited state intramolecular proton transfer (ESIPT) confers multiple useful photophysical characteristics to organic fluorophores, such as a large Stokes shift and tunable emission. Herein, we have designed an ESIPT-active scaffold . diaminoazobenzene.

View Article and Find Full Text PDF

Chiral amines and amino alcohols form an important category of molecules employed in the designing of new drugs and catalyst. Herein, we present a helically-twisted stereodynamic dialdehyde probe 1 for the determining of absolute configuration, and enantiomeric excess of chiral amine and amino alcohols. Probe 1 is based on the pyridine-2,6-dicarboxamide (PDC) core and undergoes rapid interconversion between the P- and M- conformers.

View Article and Find Full Text PDF

The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without 'next-generation' DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments.

View Article and Find Full Text PDF

A well-judged combination of a high axial ligand field and a bridging radical ligand in a dinuclear lanthanide complex provides a single-molecule magnet with a higher effective energy barrier for magnetic relaxation and blocking temperature compared to its non-radical analog due to significant magnetic exchange coupling between radical and Ln(III) ions. In this work, we report two chloranilate (CA) bridged dinuclear dysprosium complexes, [{(bbpen)Dy(μ-CA)Dy(bbpen)}] (1Dy) and [{(bbpen)Dy(μ-CA⋅)Dy(bbpen)}{CoCp}] (2Dy), where 2Dy is the radical bridged Dy-complex obtained via the chemical reduction of bridging CA moiety (Hbbpen=N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine). The presence of high electronegative phenoxide moiety enhances the axial anisotropy of pseudo-square antiprismatic Dy(III) ions.

View Article and Find Full Text PDF

Characterization of SSR markers from draft genome assembly and genotypic data in (Zingiberaceae).

Data Brief

August 2024

Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Madhya Pradesh 462066, India.

The plant family Zingiberaceae consists of many medicinally important tropical herbs. Here, we provide a contig level genome assembly for , one of the medicinally utilized species in this family We used genome assembly to identify candidate Simple Sequence Repeat (SSR) markers in the nuclear, chloroplast and mitochondrial compartments. We identified a total of 60,695 SSRs, which consisted of di-, tri-, tetra-, penta- and complex repeat types, and primers were designed for 14,851 SSR loci from both coding and non-coding parts of the genome.

View Article and Find Full Text PDF

Herein, we designed a chiral, axially-twisted molecular scaffold (ATMS) using pyridine-2,6-dicarboxamide (PDC) unit as pivot, chiral trans-cyclohexanediamine (CHDA) residues as linkers, and pyrene residues as fluorescent reporters. R,R-ATMS exclusively adopted M-helicity and produced differential response in UV-vis, fluorescence, and NMR upon addition of tartaric acid (TA) stereoisomers allowing naked-eye detection and enantiomeric content determination. Circular dichroism (CD) profile of R,R-ATMS underwent unique changes during titration with TA stereoisomers - while loss of CD signal at 345 nm was observed with equimolar D-TA and meso-TA, inversion was seen with equimolar L-TA.

View Article and Find Full Text PDF

The design of single-component organic compounds acting as efficient solid-state proton conduction (SSPC) materials has been gaining significant traction in recent times. Molecular design and controlled self-assembly are critical components in achieving highly efficient SSPC. In this work, we report the design, synthesis, and self-assembly of an organic macrocyclic aza-crown-type compound, P2Mac, which complements synthetic ease with efficient SSPC.

View Article and Find Full Text PDF

Herein, we disclosed the asymmetric construction of an oxa-quaternary stereocenter via an intramolecular oxa-Michael (IOM) reaction in β-substituted ortho-hydroxymethyl chalcone by the formation of 1,1-disubstituted-1,3-dihydroisobenzofuran using cinchona alkaloid-based chiral amino-squaramide catalyst. Both the (E- and Z)-β-substituted ortho-hydroxymethyl chalcone provide (S)- and (R)-enantiomers of the 1,1-disubstituted-1,3-dihydroisobenzofuran with excellent stereospecificity. In general, excellent yields (up to 95 %) and enantioselectivity (up to 98 % ee) were obtained.

View Article and Find Full Text PDF

J-domain proteins: From molecular mechanisms to diseases.

Cell Stress Chaperones

February 2024

Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. Electronic address:

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.

View Article and Find Full Text PDF

Herein, we report a novel enzymatic dimerization-induced self-assembly (e-DISA) procedure that converts alanine-tyramine conjugates into highly uniform enzyme-loaded nanoparticles (NPs) or nanocontainers by the action of horseradish peroxidase (HRP) in an aqueous medium under ambient conditions. The NP formation was possible with both enantiomers of alanine, and the average diameter could be varied from 150 nm to 250 nm (with a 5-12 % standard deviation of as-prepared samples) depending on the precursor concentration. About 60 % of the added HRP enzyme was entrapped within the NPs and was subsequently utilized for post-synthetic modification of the NPs with phenolic compounds such as tyramine or tannic acid.

View Article and Find Full Text PDF

The Upper Cretaceous (Maastrichtian) Lameta Formation is well-known for its osteological and oological remains of sauropods from the eastern and western parts of the Narmada Valley, central India. The newly documented ninety-two titanosaur clutches from Dhar District (Madhya Pradesh State, central India) add further to this extensive data. Previously parataxonomy of these titanosaur clutches was carried out with a few brief reports on palaeobiological and taphonomic aspects.

View Article and Find Full Text PDF

Immunogenic Cell Death (ICD) is a unique cell death mechanism that kills cancer cells while rejuvenating the anticancer immunosurveillance, thereby benefiting the clinical outcomes of various immuno-chemotherapeutic regimens. Herein, we report development of a library of benzo[]quinolizinium-based Au(i) complexes through an intramolecular amino-auration reaction of pyridino-alkynes. We tested 40 candidates and successfully identified BQ-AurIPr as a novel redox-active Au(i) complex with potent anticancer properties.

View Article and Find Full Text PDF

Molecules with intense near-IR (NIR) emission are beneficial for modern applications such as night vision, bio-imaging etc. However, elaborate synthetic manipulations make them demanding to accomplish. Herein, we present a simple yet exciting strategy to obtain novel Janus butterfly-shaped terrylene diimide derivatives with carbazole wings having absorption and intense emission in the NIR.

View Article and Find Full Text PDF

J-like proteins (JLPs) are emerging as ancillaries to the cellular chaperone network. They modulate functions of Hsp70:J-domain protein (JDP) systems in novel ways thereby having key roles in diverse plant processes. J-domain proteins (JDPs) form an obligate co-chaperone partnership with Hsp70s with their highly conserved J-domain to steer protein quality control processes in the cell.

View Article and Find Full Text PDF

Three-dimensionally propagated imidazolium-containing mesoporous coordination polymer and organic polymer-based platforms were successfully exploited to develop single-site heterogenized Pd-NHC catalysts for oxidative arene/heteroarene C-H functionalization reactions. The catalysts were efficient in directed arene halogenation, and nondirected arene and heteroarene arylation reactions. High catalytic activity, excellent heterogeneity and recyclability were offered by these systems making them promising candidates in the area of heterogeneous C-H functionalization, where efficient catalysts are still scarce.

View Article and Find Full Text PDF

Polarized hyphal growth of filamentous pathogenic fungi is an essential event for host penetration and colonization. The long-range early endosomal trafficking during hyphal growth is crucial for nutrient uptake, sensing of host-specific cues, and regulation of effector production. Bin1/Amphiphysin/Rvs167 (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis.

View Article and Find Full Text PDF

We report that discriminate interaction between the expanded mitochondrial chaperone network and variability in their expression might determine their functional specificities and impart robustness to mitochondrial import processes in plants. Mitochondrial Hsp70 (mtHsp70), the central component of the pre-sequence associated motor (PAM) complex, is crucial for the import of proteins to the mitochondrial matrix. Activity of mtHsp70 is regulated by a heterodimeric complex of two J-domain proteins (JDPs), Pam18 and Pam16.

View Article and Find Full Text PDF

Non-planar conjugated organic molecules (NPCOMs) contain π-conjugation across their length and also exhibit asymmetry in their conformation. In other words, certain molecular fragments in NPCOMs are either twisted or curved out of planarity. This conformational asymmetry in NPCOMs leads to non-uniform charge-distribution across the molecule, with important photophysical and electronic consequences such as altered thermodynamic stability, chemical reactivity, as well as materials properties.

View Article and Find Full Text PDF

An interesting case of external oxidant-controlled reactivity switch leading to a divergent set of ionic nitrogen-doped polycyclic aromatic hydrocarbons (N-doped PAHs), is presented here, which is quite unrecognized in copper-mediated reactions. In the current scenario, from the same pyridino-alkyne substrates, the use of the external oxidant PhI(OAc), in combination with Cu(OTf), gave N-doped spiro-PAHs via a dearomative 1,2-carboamination process; whereas, without the use of oxidant, an alkyne/azadiene [4 + 2]-cycloaddition cascade occurred to exclusively afford ionic N-doped PAHs. These newly synthesized N-doped PAHs further exhibit tunable emissions, as well as excellent quantum efficiencies.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a new chemical reaction using gold catalysis to create unique fluorescent molecules called ionic pyridinium-oxazole dyads (PODs) with adjustable emission colors.
  • One specific POD, NMe-POD, proved to be highly effective for imaging mitochondria, which is important for studying early-stage cell death and diseases.
  • Improved the synthesis method by using a different catalyst system to avoid unwanted byproducts, leading to the creation of a library of PODs that can better serve as mitochondrial imaging agents, particularly one called POD-3g, which outperformed existing options in experiments.
View Article and Find Full Text PDF

Cancer is characterized by the uncontrolled division of cells, followed by their invasion to other tissues. These kinds of cellular abnormalities arise as a result of the accumulation of genetic mutations or epigenetic alterations. Targeting genetic mutations by drugs is a conventional treatment approach.

View Article and Find Full Text PDF