Publications by authors named "Ravindra D Mule"

Immunogenic Cell Death (ICD) is a unique cell death mechanism that kills cancer cells while rejuvenating the anticancer immunosurveillance, thereby benefiting the clinical outcomes of various immuno-chemotherapeutic regimens. Herein, we report development of a library of benzo[]quinolizinium-based Au(i) complexes through an intramolecular amino-auration reaction of pyridino-alkynes. We tested 40 candidates and successfully identified BQ-AurIPr as a novel redox-active Au(i) complex with potent anticancer properties.

View Article and Find Full Text PDF

Recently, the concept of anion-π interactions has witnessed unique applications in the field of AIEgen development. In this contribution, we disclose a consolidated study of a library of N-doped ionic AIEgens accessed through silver-mediated cyclization of pyridino-alkynes. A thorough photophysical, computational and crystallographic study has been conducted to rationalize the observed substituent- and counterion-dependent fluorescence properties of these luminogens.

View Article and Find Full Text PDF

By applying the "interplay" mode, which consolidates two key reactivity modes of gold catalysis, namely π-activation mode and cross-coupling mode, the first alkynylative Meyer-Schuster rearrangement is designed and successfully implemented. The current protocol gives straightforward access to enynones, a highly valuable building block, from easily available propargyl alcohol feedstocks. Control experiments suggest an Au(III) catalyst triggers the Meyer-Schuster rearrangement, whereas monitoring the reaction with ESI-HRMS provided strong evidence in favor of a key alkynylgold(III) intermediate which supports the proposed "interplay" scenario.

View Article and Find Full Text PDF

Exploration with high-throughput transcriptomics and metabolomics of two varieties of Ceropegia bulbosa identifies candidate genes, crucial metabolites and a potential cerpegin biosynthetic pathway. Ceropegia bulbosa is an important medicinal plant, used in the treatment of various ailments including diarrhea, dysentery, and syphilis. This is primarily attributed to the presence of pharmaceutically active secondary metabolites, especially cerpegin.

View Article and Find Full Text PDF

An interesting case of external oxidant-controlled reactivity switch leading to a divergent set of ionic nitrogen-doped polycyclic aromatic hydrocarbons (N-doped PAHs), is presented here, which is quite unrecognized in copper-mediated reactions. In the current scenario, from the same pyridino-alkyne substrates, the use of the external oxidant PhI(OAc), in combination with Cu(OTf), gave N-doped spiro-PAHs via a dearomative 1,2-carboamination process; whereas, without the use of oxidant, an alkyne/azadiene [4 + 2]-cycloaddition cascade occurred to exclusively afford ionic N-doped PAHs. These newly synthesized N-doped PAHs further exhibit tunable emissions, as well as excellent quantum efficiencies.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a new chemical reaction using gold catalysis to create unique fluorescent molecules called ionic pyridinium-oxazole dyads (PODs) with adjustable emission colors.
  • One specific POD, NMe-POD, proved to be highly effective for imaging mitochondria, which is important for studying early-stage cell death and diseases.
  • Improved the synthesis method by using a different catalyst system to avoid unwanted byproducts, leading to the creation of a library of PODs that can better serve as mitochondrial imaging agents, particularly one called POD-3g, which outperformed existing options in experiments.
View Article and Find Full Text PDF

Reported herein, for the first time, is a copper-promoted intramolecular [4+2]-cycloaddition cascade to access ionic N-doped polycyclic aromatic hydrocarbons (PAHs) with tunable emission wavelengths. It is shown that the reaction can be made catalytic with respect to Cu(OTf)2 when an external oxidant, Selectfluor, was used.

View Article and Find Full Text PDF