Adv Healthc Mater
July 2025
Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) are essential surgical techniques in periodontal therapy, employing barrier membranes to prevent soft tissue infiltration and create a conducive environment for bone regeneration. However, the regenerative performance of conventional barrier membranes remains limited due to poor interface management and insufficient biological functionality. Recent developments have introduced the concept of Janus membranes-structures with asymmetric, dual-function surfaces-offering promising solutions to these challenges.
View Article and Find Full Text PDFCurrent treatments for osteoporotic fractures primarily target bone-resorbing osteoclasts, but they often fail to address fibrosis-a buildup of fibrous tissue that disrupts bone healing. This fibrosis is frequently triggered by bisphosphonates, which, while effective in reducing bone loss, also activate fibroblasts and impair callus formation. Here we show that an injectable hydrogel bone adhesive composed of magnesium-alendronate metal-organic frameworks (Mg-ALN MOF) embedded in a gelatin/dialdehyde starch network can simultaneously suppress bone resorption and reduce fibrosis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2025
Conductive hydrogels are promising candidates for next-generation wearable electronics due to their flexibility, biocompatibility, and ion-conductive properties. However, achieving a balance among electrical conductivity, mechanical robustness, interfacial adhesion, and environmental stability remains a key challenge. Herein, we present a multifunctional hydrogel synthesized via a one-pot free radical polymerization of acrylic acid, methacryloxyethyltrimethylammonium chloride, tannic acid, and calcium ions.
View Article and Find Full Text PDFThe occurrence of bacterial keratitis (BK) presents a significant threat to ocular health, often leading to visual impairment. Currently, conventional antibiotic therapies tend to promote bacterial resistance and lack biocompatibility. Therefore, it is of great significance to develop an alternative product with safe and efficient antimicrobial properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2025
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFDiabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFPiezoelectric hydrogel sensors are becoming increasingly popular for wearable sensing applications due to their high sensitivity, self-powered performance, and simple preparation process. However, conventional piezoelectric hydrogels lack antifreezing properties and are thus confronted with the liability of rupture in low temperatures owing to the use of water as the dispersion medium. Herein, a kind of piezoelectric organohydrogel that integrates piezoelectricity, low-temperature tolerance, mechanical robustness, and stable electrical performance is reported by using poly(vinylidene fluoride) (PVDF), acrylonitrile (AN), acrylamide (AAm), -styrenesulfonate (NaSS), glycerol, and zinc chloride.
View Article and Find Full Text PDFConversion between mechanical and electrical cues is usually considered unidirectional in cells with cardiomyocytes being an exception. Here, we discover a material-induced external electric field () triggers an electro-mechanical coupling feedback loop in cells other than cardiomyocytes, human umbilical vein endothelial cells (HUVECs), by opening their mechanosensitive Piezo1 channels. When HUVECs are cultured on patterned piezoelectric materials, the materials generate (confined at the cellular scale) to polarize intracellular calcium ions ([Ca]), forming a built-in electric field () opposing .
View Article and Find Full Text PDFMethicillin-resistant (MRSA) infection is a pressing clinical issue that impedes wound healing. Pro-inflammatory M1 macrophages is required to clear bacteria and recruit various cell types during the initial phase of wound healing, but timing of this process is crucial. Herein, a microenvironment-responsive nanofibrous dressing capable of timely macrophage phenotype transition is constructed by coating copper ions (Cu)-polydopamine (PDA) networks on poly (ε-caprolactone) fiber (PCL-fiber) membrane.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
All-polymer piezoelectric elastomers that integrate self-powered, soft, and elastic performance are attractive in the fields of flexible wearable electronics and human-machine interfaces. However, a lack of adhesion and UV-blocking performances greatly hinders the potential applications of elastomers in these emerging fields. Here, a high-performance piezoelectric elastomer with piezoelectricity, mechanical robustness, self-adhesion, and UV-resistance was developed by using poly(vinylidene fluoride) (PVDF), acrylonitrile (AN), acrylamide (AAm), and oxidized tannic acid (OTA) (named PPO).
View Article and Find Full Text PDFJ Nanobiotechnology
July 2023
The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering.
View Article and Find Full Text PDFPhotothermal hydrogel adhesives have yielded promising results for wound closure and infected wound treatment in recent years. However, photothermal hydrogel bioadhesives with on-demand removability without additional nanomaterials-based photothermal agents have rarely been reported in the literature. In this work, an injectable intrinsic photothermal hydrogel bioadhesive with an on-demand removal trait is developed through dynamic cross-linking of gelatin (Gel), tannic acid (TA) quinone, and borax for closing skin incisions and accelerating methicillin-resistant Staphylococcus aureus (MRSA) infected wound healing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Piezoelectric sensors are widely used in wearable devices to mimic the functions of human skin. However, it is considerably challenging to develop soft piezoelectric materials that can exhibit high sensitivity, stretchability, super elasticity, and suitable modulus. In this study, a soft skin-like piezoelectric polymer elastomer composed of poly(vinylidene fluoride) (PVDF) and a novel elastic substrate polyacrylonitrile is prepared by combining the radical polymerization and freeze-drying processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
Bioadhesives are widely used in a variety of medical settings due to their ease of use and efficient wound closure and repair. However, achieving both strong adhesion and removability/reusability is highly needed but challenging. Here, we reported an injectable mesoporous bioactive glass nanoparticle (MBGN)-incorporated biopolymer hydrogel bioadhesive that demonstrates a strong adhesion strength (up to 107.
View Article and Find Full Text PDFMacromol Biosci
February 2023
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM).
View Article and Find Full Text PDFInt J Nanomedicine
September 2022
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings.
View Article and Find Full Text PDFBioact Mater
December 2022
Pathological angiogenesis frequently occurs in tumor tissue, limiting the efficiency of chemotherapeutic drug delivery and accelerating tumor progression. However, traditional vascular normalization strategies are not fully effective and limited by the development of resistance. Herein, inspired by the intervention of endogenous bioelectricity in vessel formation, we propose a wireless electrical stimulation therapeutic strategy, capable of breaking bioelectric homeostasis within cells, to achieve tumor vascular normalization.
View Article and Find Full Text PDFElectroconductive hydrogels are very attractive candidates for accelerated spinal cord injury (SCI) repair because they match the electrical and mechanical properties of neural tissue. However, electroconductive hydrogel implantation can potentially aggravate inflammation, and hinder its repair efficacy. Bone marrow stem cell-derived exosomes (BMSC-exosomes) have shown immunomodulatory and tissue regeneration effects, therefore, neural tissue-like electroconductive hydrogels loaded with BMSC-exosomes are developed for the synergistic treatment of SCI.
View Article and Find Full Text PDFSmall Methods
May 2022
The vulnerability of hydrogel electronic materials to mechanical damage due to their soft nature has necessitated the development of self-repairing hydrogel electronics. However, the development of such material with underwater self-repairing capability as well as excellent mechanical properties for application in aquatic environments is highly challenging and has not yet been fully realized. This study designs a tough and highly efficient underwater self-repairing supramolecular hydrogel by synergistically combining weak hydrogen bonds (H-bonds) and strong dipole-dipole interactions.
View Article and Find Full Text PDFThe critical effects that impair diabetic wound healing are characterized by poor vascularization and severe peripheral neuropathy. Current management strategies for diabetic wound healing are unsatisfactory, due to the paucity of neurovascular regeneration at the wound site. Importantly, conductivity in skin tissue is reported to be essential for modulating myriad biological processes especially vascular and nerve regeneration.
View Article and Find Full Text PDFWe developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CD was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated.
View Article and Find Full Text PDFInjectable biomaterial-based treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury (SCI) by bridging cavity spaces. However, there are limited reports of injectable, electroconductive hydrogels with self-healing properties being employed for the treatment of traumatic SCI. Hence, a natural extracellular matrix (ECM) biopolymer (chondroitin sulphate and gelatin)-based hydrogel containing polypyrrole, which imparted electroconductive properties, is developed for traumatic SCI repair.
View Article and Find Full Text PDFActa Biomater
October 2021
Retinal diseases, including age-related macular degeneration (AMD), are a major cause of blindness. Efficient delivery of therapeutic genes to retinal cells to treat retinal disease is a formidable challenge. In this study, we developed a core-shell nanoplatform composed of a core and two external layers for targeted delivery of the gene to the retina.
View Article and Find Full Text PDFBioact Mater
November 2021
Conductive scaffolds have been shown to exert a therapeutic effect on patients suffering from peripheral nerve injuries (PNIs). However, conventional conductive conduits are made of rigid structures and have limited applications for impaired diabetic patients due to their mechanical mismatch with neural tissues and poor plasticity. We propose the development of biocompatible electroconductive hydrogels (ECHs) that are identical to a surgical dressing in this study.
View Article and Find Full Text PDFGene therapy is a promising approach to many diseases, however, the barriers in the gene delivery restrict its application. Therefore, in the present study, an efficient non-viral gene vector (PRHF/N/D) for overcoming the barriers in gene delivery was prepared. The synthesized PRHF integrated the advantages of PAMAM and amino acids, which could improve the cellular uptake, enhance the endosomal escape ability and minimize cytotoxicity.
View Article and Find Full Text PDF