Urine-derived renal progenitor cells (UdRPCs) from healthy individuals have been identified as having the potential to repair kidney damage. However, it remains uncertain whether UdRPCs retain their functionality in chronic kidney disease (CKD) patients. In this study, UdRPCs were isolated from healthy individuals and CKD patients.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2025
Freshwater scarcity and nitrate contamination in water sources are critical environmental sustainability challenges. We address these two challenges by coupling seawater desalination with electrochemical nitrate reduction (NORR) via bimetallic Fe/Zn polyphthalocyanine frameworks. They serve as high-performance catalysts for NORR toward ammonia (NH) production.
View Article and Find Full Text PDFElectrode materials are crucial for the performance of redox-flow desalination (RFD), a promising technology for addressing the increasing global demand for freshwater. However, the lack of efficient and stable electrode options has hindered its widespread application. To overcome this limitation, we developed polyaniline (PANI)-modified graphite foil electrodes, achieving a significant reduction in energy consumption for RFD (up to 78.
View Article and Find Full Text PDFObjectives: To investigate the knowledge, attitudes and practices (KAP) among patients with end-stage kidney disease (ESKD) towards hyperkalaemia.
Design: A cross-sectional study.
Setting: This study was conducted between September and November 2023 at the Department of Nephrology, Shenzhen Third People's Hospital and the Second Affiliated Hospital of Southern University of Science and Technology.
Angew Chem Int Ed Engl
March 2025
Angew Chem Int Ed Engl
January 2025
Coupling desalination with electrocatalytic reactions is an emerging approach to simultaneously addressing freshwater scarcity and greenhouse gas emissions. However, the salt removal rate in such processes is slow, and the applicable water sources are often limited to those with high salt concentrations. Herein, we show high-performance electrocatalytic desalination by coupling with electrochemical CO reduction using a carbon catalyst.
View Article and Find Full Text PDFFront Neurosci
November 2024
Epilepsy is a chronic neurological disorder that poses significant challenges to patients and their families. Effective detection and prediction of epilepsy can facilitate patient recovery, reduce family burden, and streamline healthcare processes. Therefore, it is essential to propose a deep learning method for efficient detection and prediction of epileptic electroencephalography (EEG) signals.
View Article and Find Full Text PDFThe photocatalytic proficiency of BiTiO is hindered by its inadequate solar energy harnessing capability and swift electron-hole recombination dynamics. In the investigation, the study innovated Bi metal oxide heterostructures by embedding Bi nanoparticle-modified BiTiO composites, systematically synthesizing a suite of Bi/BT materials through meticulous tuning of the Bi and Ti precursor ratios. Notably, the Bi/BT-2 series was examined for its photocatalytic performance in tetracycline (TC) degradation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
The solar-driven photoelectrochemical desalination (SD-PED) technology, as a new emerging desalination technique, has been developed and attracted the increasing attention. However, practical application remains hampered by several constraints, including the rapid deterioration of photocurrent, and the long-term stability of system. In this research, MOF-derived nitrogen-doped carbon@CoO/BVO (CoO@NC/BVO) heterostructured photoanode was design for efficient and durable solar driven redox desalination.
View Article and Find Full Text PDFThe energy band structure and surface/interface properties are prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for photoelectrochemical (PEC) photodetection. How to precisely design/regulate the band structure and surface/interface properties of semiconductor materials is the key to improving the performance of PEC photodetection. Herein, the quintuple heterotypic homojunction (QH) GaAs film is fabricated with a gradient energy band via plasma-assisted molecular beam epitaxy for constructing a high-speed carrier transport channel in PEC photodetection, which can efficiently drive the separation and transport of photogenerated electron-hole pairs.
View Article and Find Full Text PDFThe construction of supercapacitor electrode materials with exceptional performance is crucial to the commercialisation of flexible supercapacitors. Here, a novel in-situ precipitation technique was applied for constructing iron(II)-phthalocyanine (FePc) based nanocomposite as the electrode material in quasi-solid-state flexible supercapacitors. The highly redox-active FePc nanostructures were grown in the multi-walled-CNTs (MWCNTs) networks, which shows convenient electron/electrolyte ion transport pathways along with outstanding structural stability, leading to high energy storage and long cycling life.
View Article and Find Full Text PDFStraightforward, sensitive, and specific human immunodeficiency virus (HIV) assays are urgently needed. The creation of a point-of-care (POC) device for decentralized diagnostics has the potential to significantly reduce the time to treatment, especially for infectious diseases. Notably, however, many POC solutions proposed to date fall short of meeting the ASSURED guidelines, which are crucial for effective deployment in the field.
View Article and Find Full Text PDFA novel air-lifting loop reactor combines anoxic, oxic, and settling zones to achieve organic and nutrient removal, as well as solid-liquid separation. To address sludge settling ability and operation stability issues caused by low dissolved oxygen in aerobic zones, this study proposes using modified polypropylene carriers to establish a fixed-film activated sludge (IFAS) system. A pilot-scale demonstration of the IFAS-based air-lifting loop reactor is conducted, and the results show successful operation for approximately 300 days.
View Article and Find Full Text PDFThe development of modern construction and transportation industries demands increasingly high requirements for thin, lightweight, high-strength, and highly tough composite materials, such as metal carbides and concrete. Bamboo is a green, low-carbon, fast-growing, renewable, and biodegradable material with high strength and toughness. However, the density of its inner layer is low due to the functional gradient (the volume fraction of vascular bundles decreases from the outer layer to the inner layer), resulting in low performance, high compressibility, and significant amounts of bamboo waste.
View Article and Find Full Text PDFElectrochemical redox flow desalination is an emerging method to obtain freshwater; however, the costly requirement for continuously supplying and regenerating redox species limits their practical applications. Recycling of spent lithium-ion batteries is a growing challenge for their sustainable utilization. Existing battery recycling methods often involve massive secondary pollution.
View Article and Find Full Text PDFTumor extracellular matrix (ECM) not only forms a physical barrier for T cells infiltration, but also regulates multiple immunosuppressive pathways, which is an important reason for immunotherapy failure. The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway plays a key role in activating CD8 T cells, maintaining CD8 T cells stemness and enhancing the antitumor effect. Herein, a zinc-organometallic framework vaccine (ZPM@OVA-CpG) prepared by self-assembly, which achieves site-directed release of Zn in dendritic cell (DC) lysosomes and tumor microenvironment under acidic conditions, is reported.
View Article and Find Full Text PDFAchieving simultaneous carbon and nitrogen removal with sludge-liquid separation in a single reactor offers a solution to land shortages and improves treatment efficiency in municipal wastewater treatment plants of megacities. This study proposes a novel air-lifting continuous-flow reactor configuration with an alternative-aeration strategy that creates multi-functional zones for anoxic, oxic, and settlement processes. The optimal operating conditions for the reactor include a long anoxic hydraulic retention time, low dissolved oxygen (DO) in the oxic zone, and no specific reflux for external nitrifying liquid, which exhibit a high nitrogen removal efficiency of over 90% in treating real sewage with C/N < 4 in the pilot-scale study.
View Article and Find Full Text PDFHigh energy consumption and low salt removal rate are key barriers to realizing practical electrochemical seawater desalination processes. Here, we demonstrate a novel solar-driven redox flow desalination device with double photoelectrodes to achieve efficient desalination without electrical energy consumption. The device consists of three parts: one photoanode unit, one photocathode unit, and one redox flow desalination unit sandwiched between the two photoelectrode units.
View Article and Find Full Text PDFJ Hazard Mater
April 2023
Hydrothermal processes are considered a promising strategy for the conversion of ever-growing plastic wastes. Plasma-assisted peroxymonosulfate-hydrothermal process has attracted increasing attention in enhancing the efficiency of hydrothermal conversion. However, the role of solvent in this process is unclear and rarely researched.
View Article and Find Full Text PDFEnviron Technol
April 2024
: The single function of salt removal limits the further development of the CDI system. A multi-function CDI device is proposed to achieve electrochemical desalination, organics degradation and dichromate ion removal.
View Article and Find Full Text PDFPolymers (Basel)
October 2022
This study aimed to investigate the mechanical property decay that might occur during actual use and soil burial degradation of bamboo fiber lunch boxes. For this, the effects of three accelerated aging methods, namely damp-heat treatment, freeze-thaw cycle, and artificial weathering cycle, on the tensile strength, dynamic viscoelasticity, and chemical composition of bamboo fiber lunch boxes were compared, and a correlation of their mechanical property decay with soil burial degradation was established to obtain an acceleration factor (SAF) with aging time as a reference. The results showed that the mechanical properties of the bamboo fiber lunch box decreased to different degrees under the three accelerated methods, and the tensile strength decreased to less than 50% after 36 h of damp-heat treatment, 5 freeze-thaw cycles, and 11 artificial weathering cycles.
View Article and Find Full Text PDFA novel vertical dual-loop reactor (VDLR) was developed to start and conduct a single-stage partial nitritation (PN) and anammox (PN/A) process for treating landfill leachate. Results showed that the total nitrogen (TN) removal reached 1.54 kg N/m·d in the VDLR.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
It is important for the floor of railroad cars to be fitted with vibration- and noise-reducing, fire-resistant, and durable materials. In this study, inspired by a delicate and ordered bamboo gradient structure and excellent multilevel interfaces, we fabricated a laminated composite with characteristics similar to those of the bamboo structure using a simple and effective "top-down" method by laminating fast-growing wood, waste rubber, and bamboo charcoal plastic sheets made of bamboo processing residues. This composite material combines the unique advantages of a laminated structure design and composite interface bionics.
View Article and Find Full Text PDF