Background: Bone aging, displays osteoporosis and impaired bone formation, intricately linked to the metabolic alteration of mesenchymal stem cells (MSCs). However, the precise mechanisms underlying this relationship remain unclear.
Objectives: To determine how P2rx7 modulates mitochondrial dynamics during bone aging and osteogenic differentiation of MSCs.
The growing societal impact of coronavirus disease 2019 (COVID-19) has underscored the urgent need for innovative strategies to address the ongoing challenges posed by the pandemic. While rapid therapeutic interventions remain critical for short-term mitigation, equally vital is the development of accessible and efficient diagnostic tools to curb viral transmission. In this context, optical sensing technologies have emerged as foundational tools for detection and diagnosis, owing to their rapid response, user-friendliness, and adaptability.
View Article and Find Full Text PDFFront Med (Lausanne)
July 2024
The metal-on-metal (MoM) artificial hip joint is a prosthesis used in early hip arthroplasty, particularly for hip resurfacing and total hip arthroplasty. However, abrasion and corrosion of MoM bearings result in the production of metal ions, such as cobalt and chromium, thereby inducing several complications such as inflammatory pseudotumor, aseptic inflammation, and allergy to metal ions (delayed type IV hypersensitivity). In this case report, we present a patient who was hospitalized for recurrence of a mass in the right inguinal area.
View Article and Find Full Text PDFThe development of tellurium (Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns. However, the nanosized Te (nano-Te) materials reported to date suffer from a series of drawbacks, including limited light absorption and a lack of surface structures. Herein, we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.
View Article and Find Full Text PDFJ Extracell Vesicles
December 2022
Neoantigens derived from mutant proteins in tumour cells could elicit potent personalized anti-tumour immunity. Nevertheless, the layout of vaccine vehicle and synthesis of neoantigen are pivotal for stimulating robust response. The power of synthetic biology enables genetic programming bacteria to produce therapeutic agents under contol of the gene circuits.
View Article and Find Full Text PDFNanophotonics
December 2022
Quantum dots (QDs) often exhibit unique behaviors because the reduction in lateral size leads to stronger quantum confinement effects and a higher surface-to-volume ratio in comparison with larger two-dimensional nanosheets. However, the preparation of homogeneous QDs remains a longstanding challenge. This work reports the preparation of high-yield and ultrasmall tin disulfide (SnS) QDs by combining top-down and bottom-up approaches.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
In this work, MXene films incorporating cellulose nanofibers (CNFs) with a spider-web-like structure were fabricated using a facile vacuum-assisted filtration method. The CNFs significantly improved the flexibility and stability of the MXene membranes. The resulting composites functioned well as electrodes and friction layers in triboelectric nanogenerators (TENGs) when paired with either polytetrafluoroethylene (PTFE) as an electropositive material or nylon as an electronegative material.
View Article and Find Full Text PDFThe fabrication of fiber-reinforced metal matrix composites (MMCs) mainly consists of two stages: infiltration and solidification, which have a significant influence on the properties of MMCs. The present study is primarily focused on the simulation of the solidification process and the effect of the active cooling of fibers with and without nickel coating for making the continuous carbon fiber-reinforced aluminum matrix composites. The thermomechanical finite element model was established to investigate the effects of different cooling conditions on the temperature profile and thermal stress distributions based on the simplified physical model.
View Article and Find Full Text PDFThe size and structural control of particulate carriers for imaging agents and therapeutics are constant themes in designing smart delivery systems. This is motivated by the causal relationship between geometric parameters and functionalities of delivery vehicles. Here, both in vitro and in vivo, the controlling factors for cytotoxicity, photothermal, and anti-tumor effects of biodegradable magnesium@poly(lactic-co-glycolic acid (Mg@PLGA) particulate carriers with different sizes and shell thicknesses are investigated.
View Article and Find Full Text PDFIn this work, ultrafast fiber lasers based on 2D selenium-coated tellurium nanosheets in the infrared band are reported. 2D selenium-coated tellurium as a mode locker is shown with broadband saturable absorption and is capable of supporting ultra-stable pulse trains with several hundred-femtosecond pulse widths in the laser cavity. In particular, the as-fabricated 2D selenium-coated tellurium based fiber laser source operating in the communication band (1.
View Article and Find Full Text PDFResearch (Wash D C)
June 2020
Monoelemental two-dimensional (2D) materials (Xenes) aroused a tremendous attention in 2D science owing to their unique properties and extensive applications. Borophene, one emerging and typical Xene, has been regarded as a promising agent for energy, sensor, and biomedical applications. However, the production of borophene is still a challenge because bulk boron has rather intricate spatial structures and multiple chemical properties.
View Article and Find Full Text PDFAdv Healthc Mater
July 2020
Belonging to the chalcogen group, the elements selenium (Se) and tellurium (Te) are located in Group VI-A of the periodic table. Zero-valent nanodimensioned Se (nano-Se) and Te (nano-Te) have displayed important biomedical applications in recent years. The past two decades have witnessed an explosion in novel cancer treatment strategies using nano-Se and nano-Te as aggressive weapons against tumors.
View Article and Find Full Text PDFTwo-dimensional nanomaterial-based photothermal therapy (PTT) is currently under intensive investigation as a promising approach toward curative cancer treatment. However, high toxicity, moderate efficacy, and low uniformity in shape remain critical unresolved issues that hamper their clinical application. Thus, there is an urgent need for developing versatile nanomaterials to meet clinical expectations.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2020
Water shortage is one of the most concerning global challenges in the 21st century. Solar-inspired vaporization employing photothermal nanomaterials is considered to be a feasible and green technology for addressing the water challenge by virtue of abundant and clean solar energy. 2D nanomaterials aroused considerable attention in photothermal evaporation-induced water production owing to their large absorption surface, strong absorption in broadband solar spectrum, and efficient photothermal conversion.
View Article and Find Full Text PDFInkjet-printing was used to prepare a flexible and transparent humidity sensor with a TiC/Ag hybrid as the humidity-sensitive film and poly(diallyldimethylammonium chloride) (PDDA) as the adhesive layer. The sensor demonstrates an ultrahigh sensitivity (106 800%), a rapid response (80 ms), and excellent bending resistance. We demonstrate that an array of sensors can track moving fingers in a non-contact way and map the distance of the fingers away from the sensor surface.
View Article and Find Full Text PDFHerein, a core-shell tellurium-selenium (Te-Se) nanomaterial with polymer-tailed and lateral heterojunction structures is developed as a photothermal absorber in a bionic solar-evaporation system. It is further revealed that the amorphous Se shell surrounds the crystalline Te core, which not only protects the Te phase from oxidation but also serves as a natural barrier to life entities. The core (Te)-shell (Se) configuration thus exhibits robust stability enhanced by 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Humidity sensors have broad applications in health monitoring, environmental protection and human-machine interface, and robotics. Here, we developed a humidity sensor using alkali oxidation method to grow in situ TiO nanowires on two-dimensional TiC MXene. With an order of magnitude larger surface area compared to pure TiC or TiO materials, the urchin-like TiC/TiO composite demonstrates a record high sensitivity in a low relative humidity (RH) environment (∼280 pF/% RH from 7% RH to 33% RH).
View Article and Find Full Text PDFLead monoxide (PbO), a novel few-layer two-dimensional (2D) material, was theoretically predicted to have an excellent optical response. Herein, the nonlinear optical response of PbO in the infrared region was experimentally investigated. The feasibility of PbO nanosheets as an effective optical saturable absorber was experimentally verified for the first time.
View Article and Find Full Text PDFSynergistic cancer therapy, such as those combining chemotherapeutic and photothermal methods, has stronger treatment effect than that of individual ones. However, it is challenging to efficiently deliver nanocarriers into tumor cells to elevate intracellular drug concentration. Herein, we developed an effective pH-responsive and dual drug co-delivery platform for combined chemo/photothermal therapy.
View Article and Find Full Text PDFTellurium (Te) exhibits many intriguing properties including thermoelectricity, photoelectricity, piezoelectricity, and photoconductivity, and is widely used in detectors, sensors, transistors, and energy devices. Herein, ultrathin two-dimensional (2D) Te nanosheets were fabricated using a facile and cost-effective liquid-phase exfoliation method. Mixing the as-prepared 2D Te nanosheets with polyvinylpyrrolidone (PVP) provided a uniform 2D Te/PVP membrane.
View Article and Find Full Text PDFJ Control Release
February 2019
ACS Appl Mater Interfaces
January 2019
Owing to the attractive energy band properties, a black phosphorus (BP)-analogue semiconductor, germanium selenide (GeSe), shows a promising potential applied for optoelectronic devices. Herein, ultrathin GeSe nanosheets were systematically prepared via a facile liquid-phase exfoliation approach, with controllable nanoscale thickness. Different from BP, ultrathin GeSe nanosheets exhibit good stability under both liquid and ambient conditions.
View Article and Find Full Text PDF