Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Seawater contains many electrolytes, is abundant in nature, environmentally friendly, and chemically stable, and exhibits substantial potential for replacement of traditional inorganic electrolytes in photoelectrochemical-type photodetectors (PDs). Herein, one-dimensional semiconductor TeSe nanorods (NRs) with core-shell nanostructures were reported, and their morphology, optical behavior, electronic structure, and photoinduced carrier dynamics were systematically investigated. As photosensitizers, the as-resultant TeSe NRs were assembled into PDs, and the influence of the bias potential, light wavelength and intensity, and the concentration of seawater on the photo-response of TeSe NR-based PDs was evaluated. These PDs exhibited favorable photo-response performance upon illumination with light in the ultraviolet-visible-near-infrared (UV-Vis-NIR) range and even simulated sunlight. Moreover, the TeSe NR-based PDs also exhibited a long duration and cycling stability of its on-off switching and might be useful in marine monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr00593c | DOI Listing |