98%
921
2 minutes
20
A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed, and it exhibited great potential as a load and strain sensor for underwater robotics and daily monitoring. The hydrogel was created by using the high edge density and aspect ratio of graphene nanosheet-embedded carbon (GNEC) nanomaterials to form a three-dimensional conductive network and prevent the expansion of microcracks in the hydrogel system. Multiscale progressive enhancement of the organic hydrogels (micrometer scale) was realized with inorganic graphene nanosheets (nanometer scale). The graphene nanocrystals inside the GNEC film exhibited good electron transport properties, and the increased distances between the graphene nanocrystals inside the GNEC film caused by external forces increased the resistance, so the hydrogel was highly sensitive and suitable for connection to a loop for sensing applications. The hydrogels obtained in this work exhibited excellent mechanical properties, such as tensile properties (strain up to 1685%) and strengths (stresses up to 171 kPa), that make them suitable for use as elastic retraction devices in robotics and provide high sensitivities (150 ms) for daily human monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368655 | PMC |
http://dx.doi.org/10.1038/s41378-023-00571-7 | DOI Listing |
Nanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFAdv Eng Mater
July 2025
Department of Mechanical Engineering University of Nevada, Las Vegas, NV, US.
Highly contagious respiratory infection diseases such as COVID-19 can be transmitted by inhaling virus laden liquid droplets and short-range aerosols, released by an infected person. Particularly, in hospitals, spraying of the respiratory droplets containing pathogens from the conjunctiva or mucus of a susceptible person plays a key role in transferring the infectious diseases. N95 filtering respirators are a critical personal protective equipment.
View Article and Find Full Text PDFChem Sci
August 2025
State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
Poly(glycolic acid) (PGA) is one of the most widely used biodegradable polyesters, but its efficient valorization presents a long-standing challenge. Herein, we report the first facile PGA valorization strategy by utilizing epoxides to upcycle PGA into fused lactones under mild conditions (<100 °C), and subsequent copolymerization to produce copolyesters with wide potential tunability and enhanced performance. In the presence of epoxides and a chromium-based catalyst, PGA was efficiently transformed into fused lactones with a wide range of potential structural adjustability.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore.
Electromagnetic pollution poses significant risks to electronic devices and human health, highlighting the need for mechanically robust, lightweight, and cost-effective electromagnetic interference (EMI) shielding materials. 3D-printed structures with nanomaterial-engineered surfaces offer a promising method for tailoring mechanical and electrical properties through multiscale design. Herein, we present a facile strategy for fabricating lightweight and flexible EMI shielding structures by chemical deposition of nanostructured metal coatings onto 3D-printed polymeric substrates.
View Article and Find Full Text PDF