Cell Death Differ
August 2025
Emerging evidence indicates that transcriptional regulation plays pivotal roles in modulating cellular vulnerability to ferroptosis. However, the intricate mechanisms governing these processes remain poorly understood. In this study, we identify ATOH8, a basic helix-loop-helix (bHLH) transcription factor, as a key player in ferroptosis regulation.
View Article and Find Full Text PDFObjective: To evaluate the efficacy and safety of high-frequency irreversible electroporation for ablation of benign prostatic hyperplasia.
Materials And Methods: One hundred sixty subjects were randomly assigned to the test group to receive ablation and the control group to receive 0.2 mg/day tamsulosin.
Background: Historically, Asia had a lower prostate cancer (PCa) incidence and mortality compared with Western countries, but the gap is narrowing. Paradoxically, Asians have been reported to present with more advanced disease though more favorable outcomes. Despite PCa becoming an emerging health priority in East Asia, our knowledge remains limited.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a predominant cause of long-term disability in adults, yet the molecular mechanisms underpinning the neuropathological processes associated with it remain inadequately understood. Neutrophil cytosolic factor 1 (NCF1, also known as p47) is one of the cytosolic components of NADPH oxidase NOX2. In this study, we observed a reduction in the volume of TBI-induced brain lesions in NCF1-knockout mice compared to controls.
View Article and Find Full Text PDFBiosens Bioelectron
November 2024
Biosensors based on carbon nanotube field-effect transistors (CNT-FETs) have shown great potential in biomarker detection due to their high sensitivity because of appreciable semiconducting electrical properties. However, background signal interferences in complex mediums may results in low signal-to-noise ratio, which may impose challenges for precise biomarker detection in physiological fluids. In this work, we develop an enzymatic CNT-FET, with scalable production at wafer scale, for detection of trace sarcosine that is a biopsy-correlated biomarker of prostate cancer.
View Article and Find Full Text PDFBackground: Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer (PCa), is characterized by loss of AR signaling and resistance to AR-targeted therapy. While it is well reported that second-generation AR blockers induce neuroendocrine (NE) trans-differentiation of castration-resistant prostate cancer (CRPC) to promote the occurrence of NEPC, and pluripotent transcription factors might be potential regulators, the underlying molecular mechanisms remain unclear.
Methods: We analyzed the data from public databsets to screen candidate genes and then focused on SOX4, a regulator of NE trans-differentiation.
Molecular phenotypic variations in metabolites offer the promise of rapid profiling of physiological and pathological states for diagnosis, monitoring, and prognosis. Since present methods are expensive, time-consuming, and still not sensitive enough, there is an urgent need for approaches that can interrogate complex biological fluids at a system-wide level. Here, we introduce hyperspectral surface-enhanced Raman spectroscopy (SERS) to profile microliters of biofluidic metabolite extraction in 15 min with a spectral set, SERSome, that can be used to describe the structures and functions of various molecules produced in the biofluid at a specific time via SERS characteristics.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
May 2024
Background: Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear.
View Article and Find Full Text PDFPurpose: Benefits of docetaxel-based neoadjuvant chemohormonal therapy (NCHT) before radical prostatectomy (RP) remain largely unknown. We explored whether docetaxel-based NCHT would bring pathological benefits and improve biochemical progression-free survival (bPFS) over neoadjuvant hormonal therapy (NHT) in locally advanced prostate cancer.
Materials And Methods: A randomized trial was designed recruiting 141 locally advanced, high-risk prostate cancer patients who were randomly assigned at the ratio of 2:1 to the NCHT group (75 mg/m body surface area every 3 weeks plus androgen deprivation therapy for 6 cycles) and the NHT group (androgen deprivation therapy for 24 weeks).
Background And Objective: Olaparib + abiraterone has a combined antitumor effect in metastatic castration-resistant prostate cancer (mCRPC), but the efficacy of this combination in patients with DNA damage repair (DDR)-deficient mCRPC progressing after abiraterone is unknown. Our aim was to compare the efficacy of olaparib + abiraterone versus olaparib monotherapy for patients with DDR-deficient mCRPC progressing after abiraterone.
Methods: The study included 86 consecutive patients with DDR-deficient mCRPC progressing after abiraterone: 34 received olaparib + abiraterone, and 52 received olaparib monotherapy.
The clinical utility of circulating tumor DNA (ctDNA) in hormone-sensitive prostate cancer (HSPC) remains inadequately elucidated. This study presents the largest real-world cohort to conduct a concordance analysis between ctDNA and tissue-based genomic profiling in HSPC patients. The findings reveal diminished ctDNA abundance in cases with low tumor burden and demonstrate an increased concordance rate between ctDNA and tissue along with the progression of disease burden.
View Article and Find Full Text PDFProstate cancer (PCa) is the second most common cancer in males worldwide. The Gleason scoring system, which classifies the pathological growth pattern of cancer, is considered one of the most important prognostic factors for PCa. Compared to indolent PCa, PCa with high Gleason score (h-GS PCa, GS ≥ 8) has greater clinical significance due to its high aggressiveness and poor prognosis.
View Article and Find Full Text PDFObjectives: Prostate cancer (PCa) is one of the most common malignancies in men worldwide and has caused increasing clinical morbidity and mortality, making timely diagnosis and accurate staging crucial. The authors introduced a novel approach based on mass spectrometry for precise diagnosis and stratification of PCa to facilitate clinical decision-making.
Methods: Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of trace blood samples was combined with machine learning algorithms to construct diagnostic and stratification models.
J Clin Invest
December 2023
Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) play an essential role in tumor therapeutic resistance. Although the lethal effect of ferroptosis on tumor cells is well reported, how TAMs inhibit the effect of ferroptosis in tumors has not been clearly defined. In this study, it is demonstrated that TAM-secreted taurine suppresses ferroptosis in prostate cancer (PCa) by activating the Liver X receptor alpha/Stearoyl-Coenzyme A desaturase 1 (LXRα/SCD1) pathway.
View Article and Find Full Text PDFNeuroendocrine prostate cancer is a rapidly progressive and lethal disease characterized by early visceral metastasis, poor prognosis, and limited treatment options. Uncovering the oncogenic mechanisms could lead to the discovery of potential therapeutic avenues. Here, we demonstrate that the RNA-binding protein ELAVL3 is specifically upregulated in neuroendocrine prostate cancer and that overexpression of ELAVL3 alone is sufficient to induce the neuroendocrine phenotype in prostate adenocarcinoma.
View Article and Find Full Text PDFPrecision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency.
View Article and Find Full Text PDFLineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1 myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1 myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type.
View Article and Find Full Text PDF