98%
921
2 minutes
20
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388772 | PMC |
http://dx.doi.org/10.3390/microorganisms13081799 | DOI Listing |
Int J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea; Microblance Inc., Daegu 41566, Republic of Korea. Electronic address:
Abandoned mines have created extensive idle areas contaminated with heavy metals (HMs). Conventional remediation methods are often costly, environmentally disruptive, and pose risks to human health. As a sustainable alternative, a biological approach utilizing metal-tolerant plant growth-promoting bacteria (mPGPBs) was employed to remediate HM-contaminated soils and assess their biological safety.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Faculty of Applied Ecology, Agricultural Science and Biotechnology, University of Inland Norway, Elverum, Norway.
Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
Introduction: Wheat is one of the three major cereal crops in the world and is susceptible to the effects of drought stress. Rhizosphere microorganisms can affect plant growth by altering nutrient absorption and resistance to stress. Studying the plant-microbe interaction under drought stress to reveal the impact of soil microorganisms on plant growth in dry land has important scientific significance.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Biological Sciences, BITS-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil bacteria that reside near plant roots (in the rhizosphere) and support plants in various ways. The specific molecular mechanisms involved in these beneficial interactions are still under scrutiny. In this context, the present study describes the role of Bacillus endophyticus J13, a multiple abiotic-stress-tolerant PGPR, in modulating various components of the leaf cell wall in Arabidopsis thaliana, under well-watered and drought conditions.
View Article and Find Full Text PDF