Publications by authors named "Sridev Mohapatra"

Plant growth-promoting rhizobacteria (PGPR) are beneficial soil bacteria that reside near plant roots (in the rhizosphere) and support plants in various ways. The specific molecular mechanisms involved in these beneficial interactions are still under scrutiny. In this context, the present study describes the role of Bacillus endophyticus J13, a multiple abiotic-stress-tolerant PGPR, in modulating various components of the leaf cell wall in Arabidopsis thaliana, under well-watered and drought conditions.

View Article and Find Full Text PDF

Salinity stress adversely impacts plant growth and development. Plant growth-promoting rhizobacteria (PGPR) are known to confer salinity stress tolerance in plants through several mechanisms. Here, we report the role of an abiotic stress-tolerant PGPR strain, Bacillus endophyticus J13, in promoting salinity stress tolerance in Arabidopsis thaliana, by elucidating its impact on physiological responses, polyamine (PA) and ethylene biosynthesis, and brassinosteroid signaling.

View Article and Find Full Text PDF

This manuscript reports the whole genome sequence of a conditionally pathogenic rhizobacterial strain, Pseudomonas putida AKMP7, which has been previously reported by us to be beneficial to Arabidopsis thaliana under well-watered conditions and pathogenic to the plant under water stress. As part of a study to understand this unique behavior, the whole genome sequence of this strain was analyzed. Based on the results, it was identified that the total length of the AKMP7 genome is 5,764,016 base pairs, and the total GC content of the genome is 62.

View Article and Find Full Text PDF

We have previously reported a phenomenon of "conditional pathogenesis", in which, a drought-tolerant rhizobacterium, Pseudomonas putida AKMP7, promotes plant growth under well-watered conditions, while, deteriorating plant health under water-stressed conditions, in Arabidopsis thaliana seedlings. To understand the molecular mechanisms behind this phenomenon, we studied the modulation of salicylic acid (SA) biosynthesis as well as SA-responsive gene expression, involved in systemic acquired resistance (SAR), in A. thaliana, by AKMP7, under well-watered and water-stressed conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Stem rot (caused by Sclerotium hydrophilum) and false smut (caused by Ustilaginoidea virens) are significant threats to rice production in India and elsewhere, and while synthetic fungicides can control these diseases, their overuse can lead to resistance and environmental harm.
  • The study explores using native microbial biocontrol agents (BCAs) from rice rhizosphere as eco-friendly alternatives to manage these diseases sustainably, analyzing their effectiveness and impact on plant growth.
  • Results showed that treating rice seeds with identified BCAs significantly improved seed vigor and seedling growth while reducing disease incidence, correlating the diverse phytohormones produced by these microbes with enhanced plant health and disease resistance.
View Article and Find Full Text PDF

Plant growth-promoting rhizobacteria (PGPR) are beneficial soil bacteria that colonise the rhizosphere and help plants in growth, development, and stress tolerance. While there is a significant body of research elucidating their benefits to plants, studies on the "abnormal" or "unexpected" behavior of these bacteria are almost non-existent. One such study from our laboratory has previously reported a unique situation in which a certain strain of drought and thermo-tolerant PGPR, namely, Pseudomonas putida AKMP7, becomes pathogenic towards Arabidopsis thaliana under drought conditions, but not under normal (well-watered) conditions.

View Article and Find Full Text PDF

Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the effectiveness of four bacterial strains—two from Pseudomonas and two from Bacillus—on promoting plant growth under osmotic stress caused by polyethylene glycol (PEG).
  • All strains displayed adaptability to osmotic stress, with slower growth rates compared to normal conditions, and produced beneficial compounds such as exopolysaccharides and phytohormones.
  • When applied to Arabidopsis thaliana seedlings, the bacterial strains helped mitigate the negative effects of osmotic stress, leading to improved plant health as indicated by increased fresh and dry weights.
View Article and Find Full Text PDF

Plant growth promoting rhizobacteria (PGPR) are a diverse group of beneficial soil bacteria that help plants in myriad ways. They are implicated in the processes of general growth and development, as well as stress mitigation. Although the physiology of plant-PGPR interaction for abiotic stress tolerance has been well reported, the underlying molecular mechanisms in this phenomenon are not clearly understood.

View Article and Find Full Text PDF

In living systems, environmental stress due to biotic and abiotic factors triggers the production of myriad metabolites as a potential mechanism for combating stress. Among these metabolites are the small polycationic aliphatic amine molecules - polyamines, which are ubiquitous in all living organisms. In this work, we demonstrate a correlation between cellular concentration of three major polyamines (putrescine, spermidine and spermine) with lead exposure on bacteria for a period of 6-24 h.

View Article and Find Full Text PDF

Protein microarrays have emerged as an indispensable research tool for providing information about protein functions and interactions through high-throughput screening. Traditional methods for immobilizing biomolecules onto solid surfaces have been based on covalent and noncovalent binding, entrapment in semipermeable membranes, microencapsulation, sol gel, and hydrogel methods. Each of these techniques has its own strengths but fails to combine the most important tenets of a functional protein microarray such as covalent attachment, native protein conformation, homogeneity of the protein monolayer, control over active site orientation, and retention of protein activity.

View Article and Find Full Text PDF

The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra x maximowiczii), one with constitutively high Put (resulting from transgenic expression of a mouse ornithine decarboxylase--called HP cells) and the other with low Put (control cells), we investigated the effects of reduced Ca (0.

View Article and Find Full Text PDF

The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response.

View Article and Find Full Text PDF

While polyamines (PAs) have been suggested to protect cells against Reactive Oxygen Species (ROS), their catabolism is known to generate ROS. We compared the activities of several enzymes and cellular metabolites involved in the ROS scavenging pathways in two isogenic cell lines of poplar (Populus nigraxmaximowiczii) differing in their PA contents. Whereas the control cell line was transformed with beta-glucuronidase (GUS), the other, called HP (High Putrescine), was transformed with a mouse ornithine decarboxylase (mODC) gene.

View Article and Find Full Text PDF