Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698797PMC
http://dx.doi.org/10.3390/biology10121255DOI Listing

Publication Analysis

Top Keywords

approaches enhance
8
tolerance plants
8
comprehensive review
8
soil salinity
8
crop plants
8
advances field
8
enhance salinity
8
salinity tolerance
8
approaches
6
plants
5

Similar Publications

Wearable bioelectronics for skin cancer management.

Biomaterials

August 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:

Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.

View Article and Find Full Text PDF

An alternative approach to diagnosis and treatment of intractable paroxysmal sneezing in a child.

Turk J Pediatr

September 2025

Department of Child and Adolescent Psychiatry, Ankara Bilkent City Hospital, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.

Background: Intractable paroxysmal sneezing is a rare and diagnostically challenging condition in children, often mimicking organic diseases. While it is often addressed as psychogenic in the literature, our case presented findings suggestive of a tic disorder, highlighting the need for a broader diagnostic perspective.

Case Presentation: An 11-year-old girl was referred to the child and adolescent psychiatry clinic with a one-year history of persistent and fluctuating sneezing episodes.

View Article and Find Full Text PDF

Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) represents a significant public health burden in developing countries, where access to early diagnosis, comprehensive care, and research infrastructure is limited. This article synthesizes the insights generated during a Fireside Chat convened by members of the Latin American Cooperative Oncology Group (LACOG)-Head and Neck and the Brazilian Group of Head and Neck Cancer (GBCP), with the participation of international expert Professor Hisham Mehanna. The discussion addressed key challenges and opportunities in clinical and translational research within resource-constrained settings.

View Article and Find Full Text PDF

In charge detection mass spectrometry (CD-MS) ions are trapped in an electrostatic linear ion trap (ELIT) where they oscillate back and forth through a conducting cylinder. The oscillating ions induce a periodic charge separation that is detected by a charge sensitive amplifier (CSA) connected to the cylinder. The resulting time domain signal is analyzed using short-time Fourier transforms to give the mass-to-charge ratio and charge for each ion, which are then multiplied to give the mass.

View Article and Find Full Text PDF