98%
921
2 minutes
20
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)). The modification involved covalent bonding of collagen via two distinct methods: (1) nonselective binding through any primary amines present on collagen using carbodiimide-based coupling and (2) site-specific binding to the free amine on the N-terminus of collagen molecules. The second approach preserves active sites responsible for interacting with integrins, crucial for epithelial cell adhesion, located near the C terminus. Both conjugation methods resulted in similar amounts of immobilized collagen; yet, surfaces with 2-PCA-based collagen conjugation exhibited 4 times more free amines. This indicates that fewer amines were used for conjugation in these samples, confirming that 2-PCA selectively binds collagen only through the N-terminus amines. Collagen-conjugated surfaces significantly enhanced HaCaT epithelial cell viability and adhesion compared to unmodified PEEK. Furthermore, 2-PCA-based conjugation resulted in a 2-fold increase in β4 subunit gene expression of integrin α6β4 (a key epithelial cell adhesion marker), higher integrin β4 immunofluorescence (IF) intensity, and over a 30% improvement in cell retention following mechanical detachment, compared to nonselective conjugation. These findings suggest that selective collagen conjugation on PEEK surfaces increases the accessibility of collagen domains responsible for binding with integrin receptors, which in turn improves epithelial cell attachment, offering a promising strategy for reducing infections and enhancing the longevity of transcutaneous devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.5c00978 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFDiagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFBMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFBMC Mol Cell Biol
September 2025
School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.
View Article and Find Full Text PDFEMBO J
September 2025
New York University Grossman School of Medicine, Microbiology Department, New York, NY, USA.
Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.
View Article and Find Full Text PDF