Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in various conditions: nasal congestion in infants, recurrent respiratory infections, acute and chronic rhinosinusitis, allergic and gestational rhinitis, empty nose syndrome, and post-endoscopic sinus surgery care. NI improves symptoms, reduces recurrence, enhances the efficacy of topical drugs, and decreases the need for antibiotics and decongestants. During the COVID-19 pandemic, NI has also been explored as a complementary measure to reduce viral load. Due to the safe profile and mechanical cleansing action on inflammatory mucus, nasal irrigations represent a valuable adjunctive treatment across a wide range of sinonasal conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388252PMC
http://dx.doi.org/10.3390/medicina61081402DOI Listing

Publication Analysis

Top Keywords

nasal irrigations
8
nasal
4
irrigations 360-degree
4
360-degree view
4
view clinical
4
clinical practice
4
practice nasal
4
nasal irrigation
4
irrigation effective
4
effective safe
4

Similar Publications

Saline nasal irrigation provides symptom relief in allergic rhinitis (AR), but the optimal saline concentration remains uncertain. The comparative efficacy of 3% hypertonic saline nasal irrigation (HSNI) versus 0.9% isotonic saline is still debated.

View Article and Find Full Text PDF

Introduction: This study investigated the mucosal immunoadjuvant effects of Gynostemma Pentaphyllum Extract (Gynostemma P.E), the bioactive constituents of , against porcine epidemic diarrhea virus (PEDV).

Methods: Twenty-four mice were randomly divided into four groups: a negative control group (intranasal administration of antigen only), a Gynostemma P.

View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) is a common allergic disease with a high incidence rate. Senkyunolide I (SEI), a bioactive ingredient isolated from Ligusticum sinense 'Chuanxiong', exhibits known analgesic and anti-inflammatory effects, yet its anti-AR potential remains unexplored. Here, we aim to investigate the therapeutic efficacy and molecular mechanisms of SEI against AR.

View Article and Find Full Text PDF

Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.

Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).

View Article and Find Full Text PDF

Microbiota-mediated metabolic alterations reveal bidirectional regulation of the gut-nose axis in mice with allergic rhinitis.

J Microbiol Immunol Infect

September 2025

Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, PR China; Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, PR China.

Background: Microbes and their metabolites are implicated in respiratory diseases, including allergic rhinitis (AR); however, the interaction between the gut and respiratory tract and the role of microbes remains unclear. We investigated the gut and nasal microbiota variations between AR and control mice and their role in the bidirectional regulation of the gut-nasal axis.

Methods: We validated the OVA-induced establishment of an AR mouse model based on nasal symptoms and histopathology.

View Article and Find Full Text PDF