98%
921
2 minutes
20
Soil co-contamination with antimony (Sb) and arsenic (As) presents significant ecological and human health risks, demanding effective stabilization solutions. This study evaluated iron-manganese-modified hydrochar (FMHC) for synergistic Sb-As stabilization in contaminated smelter soils. Through 60-day natural aging and 30 accelerated aging cycles, we assessed stabilization performance using toxicity leaching tests (acid/water/TCLP), bioavailable fraction analysis, bioaccessibility assessment, and Wenzel sequential extraction. The key findings reveal that FMHC (5 wt%) achieves durable stabilization: (1) leaching concentrations remained stable post-aging (Sb: 0.3-4.5 mg·L, >70% stabilization; As: <0.4 mg·L, >94% stabilization); (2) bioavailable fractions showed maximum reductions of 64% (Sb) and 53% (As), though with some fluctuation; and (3) bioaccessible As was consistently reduced (55-77%), while Sb exhibited greater variability (maximum 58% reduction). Speciation analysis revealed similar stabilization pathways: Sb stabilization resulted from decreased non-specifically and specifically adsorbed fractions, while As stabilization involved the reduction in non-specifically/specifically adsorbed and amorphous to poorly crystalline Fe/Al hydrous oxide-bound fractions. These transformation mechanisms explain FMHC's superior performance in converting labile Sb/As into stable forms, offering a sustainable solution for the green remediation of Sb-As co-contaminated soils in mining areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390139 | PMC |
http://dx.doi.org/10.3390/toxics13080674 | DOI Listing |
Chem Commun (Camb)
September 2025
Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.
High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Nephrology Department, Unidade Local de Saúde de Braga, Braga, Portugal.
Introduction: Bevacizumab is a monoclonal antibody that targets vascular endothelial growth factor (VEGF) and is widely used in oncology for its anti-angiogenic properties. However, VEGF inhibition may result in significant nephrotoxicity, including thrombotic microangiopathy (TMA). While systemic TMA is well-described, isolated renal-limited TMA remains under recognised.
View Article and Find Full Text PDF