98%
921
2 minutes
20
Endocrine-disrupting chemicals (EDCs) pose significant health risks at environmentally relevant levels. Global screening efforts have predominantly relied on competitive binding assays. Here, using biochemical assays and computational simulations, we identified a crucial but largely overlooked noncompetitive binding mode between EDCs and the androgen receptor (AR). Two underappreciated sites within the AR ligand-binding domain, active function 2 (AF2) and binding function 3 (BF3), were found to influence AR activity and coregulator recruitment. Specifically, AF2-binders sterically obstruct coactivator docking, while BF3-binders indirectly weaken coactivator interactions via allosteric coupling. We show that these newly recognized surfaces hamper AR-driven transcription even in the presence of endogenous hormones. Expanding the regulatory landscape of AR beyond its conventional ligand-binding domain, we find that noncompetitive binding was prevalent among 7841 EDCs. Notably, the AF2 site emerged as a key hotspot, with median preference scores exceeding those of other sites by more than 3-fold among active EDCs. These findings challenge the current paradigm of EDC screening, underscore the need for broadened assay development, and pave the way for innovative methods tailored to noncompetitive mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5c07050 | DOI Listing |
Anal Methods
September 2025
Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.
Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural
The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
The pine-forest guardian Dastarcus helophoroides mainly rely on olfaction to locate its host accurately and interact socially. Odorant binding proteins of D. helophoroides play an important role in olfactory recognition and transporting odors to olfactory receptors to trigger signal transduction.
View Article and Find Full Text PDFJ Virol Methods
September 2025
Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico. Electronic address:
Bispecific antibodies (bsAbs) offer an alternative to monoclonal antibody (mAb) cocktails for addressing the loss of efficacy due to the rapid emergence of SARS-CoV-2 mutants. The structure and specificity of the parental antibodies influence the development of a highly neutralizing bsAb. To design an effective bsAb, the recognition of 44 single-chain fragment variable (scFv) antibodies against variants of SARS-CoV-2 was evaluated, along with an assessment of their ability to competitively bind to the receptor-binding domain (RBD) compared to the most potent neutralizing mAbs.
View Article and Find Full Text PDFMol Pharmacol
August 2025
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; "Nicholas V. Perricone, M.D.," Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, Michigan. Electronic address:
Pirin is a nonheme iron-binding protein with a variety of proposed functions, including serving as a coactivator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography and fluorescence polarization studies did not detect an interaction.
View Article and Find Full Text PDF