Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal-exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun-Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method's reliability and its significance for improving production efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349691PMC
http://dx.doi.org/10.3390/polym17152154DOI Listing

Publication Analysis

Top Keywords

curing cycle
16
energy consumption
12
compression molding
8
curing
6
cycle
5
cure kinetics-driven
4
kinetics-driven compression
4
cfrp
4
molding cfrp
4
cfrp fast
4

Similar Publications

Fully Erasable Amphibious Adhesives Derived from Soybean Oil with Record-High Underwater Adhesion Strength.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Developing amphibious adhesives that combine high adhesion strength with on-demand erasability in both dry and wet environments remains a significant challenge. In this study, biomass-derived, amphibious, and erasable adhesives are fabricated by grafting 3-aminobenzoic acid and 3-aminobenzeneboronic acid onto epoxidized soybean oil (ESO), yielding ESO-Am adhesives. These adhesives are dynamically cross-linked with boroxines, hydrogen bonds, and hydrogen-bonded hydrophobic nanodomains.

View Article and Find Full Text PDF

This study provides valuable guidance for simplifying fabrication procedures and enhancing the structural integrity and safety of carbon fiber (CF) laminate transfemoral (TF) prosthetic sockets. While the high specific strength of CF laminate sockets offers advantages over conventional plastics, essential production data-their orientation-dependent strength and optimal cure conditions-are lacking, often requiring complex, costly cure cycles. This study investigated (i) the influence of fiber orientation on TF prosthetic CF socket strength via finite element analysis (FEA) during standing, and (ii) optimal single-step Vacuum-Bag-Only (VBO) cure conditions for prepreg in a low-cost conventional oven.

View Article and Find Full Text PDF

Self-healing polymeric coatings represent a transformative class of smart materials capable of autonomously or stimuli-responsively repairing mechanical or environmental damage, thereby significantly extending the operational lifespan of protected substrates. This review systematically elucidates the underlying mechanisms and chemistries enabling self-healing behavior, encompassing both extrinsic strategies such as microcapsules, microvascular networks, and corrosion inhibitor reservoirs and intrinsic approaches based on dynamic covalent (e.g.

View Article and Find Full Text PDF

Although intelligent superwettability materials with tunable wettability have been extensively studied in oil-water separation, they still exhibit several limitations including singular dimension of response, nondurable surface modification, and inadequate on-demand separation capabilities. Herein, we propose an ingenious strategy that combines pH-responsive polymer and shape memory material to achieve intelligent dual-regulation of surface wettability and pore size. A porous double-regulated foam (DRF) is obtained by uniformly mixing epoxy resin with PMMA--PDEAEMA solution and one-piece curing it through salt template method.

View Article and Find Full Text PDF

Aim: The aim of this study was to investigate the effect of post-polymerization time and curing device type on the surface roughness, microhardness and color change of 3D printed permanent resin materials.

Materials And Methods: In this study, permanent resin samples with a layer print thickness of 50 μm and dimensions of 10 × 2 mm3 were produced on SLA and DLP printers. The samples were post-polymerized in blue LED and UV LED curing devices for 10, 20, 40 and 60 min.

View Article and Find Full Text PDF