Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: , a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential.

Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC's therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies.

Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs.

Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348565PMC
http://dx.doi.org/10.3390/nu17152406DOI Listing

Publication Analysis

Top Keywords

lung injury
12
egfr/pi3k/akt/nf-κb signaling
12
oxidative stress
12
trans-sodium crocetinate
8
high-altitude acute
8
acute lung
8
signaling axis
8
tsc
8
network pharmacology
8
restoring mitochondrial
8

Similar Publications

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF

Assessment of serum Ninj1 as a potential biomarker for predicting severity in patients with COVID-19.

Clin Chim Acta

September 2025

Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:

Infection with SARS-CoV-2 elevates the expression of cytokines, resulting in a cytokine storm that serves as the primary factor for severe illness and mortality; however, effective markers for predicting disease severity and preventing are lacking. Thus, we investigated the association between serum levels of nerve injury-induced protein 1 (Ninj1), a mediator of plasma membrane rupture, and the extent of lung damage in COVID-19 patients was examined to anticipate the severity of SARS-CoV-2 infection. This study included 62 healthy participants and 264 patients with COVID-19.

View Article and Find Full Text PDF

Dual-sensitive gelatin-coated chitosan microparticles for targeted semaglutide pulmonary delivery: a novel approach to enhancing anti-inflammatory and anti-fibrotic effects.

Int Immunopharmacol

September 2025

Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt. Electronic address:

This study introduces a novel dual-sensitive drug delivery system, gelatin-coated chitosan microparticles (GL-ChMPs), designed to enhance the lung targeting and therapeutic efficacy of semaglutide (SEM). GL-ChMPs were designed to respond to the acidic environment and metalloproteinases, conditions that are typical in pulmonary fibrosis. SEM-GL-ChMPs exhibited superior lung targeting and prolonged retention while minimizing systemic distribution.

View Article and Find Full Text PDF

Background: Protein lactylation has been implicated in stress-responsive cellular mechanisms, yet its role in lung transplantation-associated ischemia-reperfusion injury (IRI) remains undefined.

Methods: Transcriptomic profiles from GSE145989 were analyzed through differential expression analysis (limma) and weighted gene co-expression network analysis (WGCNA). Integrating the identified genes with lactylation-related signatures uncovered key lactylation-related genes (LRGs) as potential targets.

View Article and Find Full Text PDF