98%
921
2 minutes
20
Unlabelled: Cowpea is an important multipurpose legume crop that used for food, feed and vegetable worldwide. Developing the high yield cultivars is the first target in cowpea breeding, however, the genetic basis of this complex trait is not yet well understood. To discover the genetic architecture of cowpea yield, a total of 215 cowpea landraces collected from Zhejiang Province were evaluated for four yield-related traits including branch number per plant (BNP), grain number per pod (GNP), pod length (PL), and pod number per plant (PNP). By resequencing this diversity panel, total of 3,880,169 high-confidence single nucleotide polymorphisms (SNPs) were identified, population structure analysis showed that these cowpea landraces were classified into four subpopulations and the subpopulation division was highly related to the pod length and pod-type. Through conducting a GWAS on the four traits, 24 genomic regions significantly associated with cowpea yield were detected and haplotype analysis showed the favorable genotypes of each locus has stronger genetic effect on the yield-related traits. Based on the cowpea G98 reference genome, six predicated genes (, , , , , ) were identified as the likely candidate genes for BNP_6.2, BNP_9.1, GNP_1.1, PL_1.1, PNP_1.2 and PNP_7.1, respectively, which involving in multiple pathways such as auxin response and regulation, cell expansion and ovary development. These results will facilitate the molecular breeding of high yield cultivars in cowpea and benefit for improving the global food security and the nutritional structure of human diets.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-025-01585-x.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307267 | PMC |
http://dx.doi.org/10.1007/s11032-025-01585-x | DOI Listing |
BMC Genomics
September 2025
Wheat Research Center, Henan Institute of Science and Technology, Xinxiang, 453000, China.
Background: As wheat is a globally important staple crop, the molecular regulatory network underlying heterosis in wheat remains incompletely understood. The flag leaf is the primary source of photoassimilates during grain filling and plays a crucial role in yield formation. However, the genetic mechanisms linking flag leaf development to heterosis are still unclear.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Hainan Institute of Northwest A&F University, Sanya, Hainan, China.
Introduction: Maize is a cornerstone of global agriculture, essential for ensuring food security, driving economic development, and meeting growing food demands. Yet, how to achieve optimal yield remains a multifaceted challenge influenced by biotic, environmental, and genetic factors whose comprehensive understanding is still evolving.
Methods: QTL mapping of eight essential yield traits was conducted across four environments - Sanya (SY) in 2021, and Yangling (YaL), Yulin (YuL), and Weinan (WN) in 2022 - using two types of populations: a KA105/KB024 recombinant inbred line (RIL) population and two immortalized backcross populations (IB1 and IB2) derived from the RILs by crossing with their respective parents.
PLoS One
September 2025
Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland.
Flowering is a critical growth stage of quinoa (Chenopodium quinoa Willd.), with a strong influence on growth and grain yield. To understand factors affecting such flowering stage effects, we measure the differential effects of genotype (G), environmental stress (E), and genotype by environment interaction (G × E) on quinoa growth and yield-related traits during the flowering stage.
View Article and Find Full Text PDFBMC Genomics
September 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
Background: Plants have evolved the ability to produce specialized metabolites as a defense mechanism against biotic and abiotic stressors, with flavonoid-mediated defense responses playing a crucial role in this process. Diverse flavonoids are present in various rice-grown resources, and they confer tolerance to different environmental conditions, including high temperature stress. Elucidating the differences in these flavonoids is essential for breeding improved rice varieties with enhanced tolerance to adverse environments.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
Leaf morphology significantly impacts rice ( L.) plant architecture and yield. Here, we identified and characterized a novel narrow-leaf mutant, , derived from indica rice cultivar 'Huazhan' using EMS mutagenesis.
View Article and Find Full Text PDF