98%
921
2 minutes
20
Chronic mechanical vibrations and endoplasmic reticulum (ER) stress are major contributors to osteoarthritis (OA) progression. This study proposes a novel "cellular shock absorption" approach by developing viscoelastic hydrogel microspheres with tunable stress relaxation properties. By modulating the chemical bonds in the hydrogel network through oxidation and hydrazine coupling reaction, hydrogel microspheres capable of absorbing shock and reducing mechanical stimulus-induced ER stress in chondrocytes are created. Cationic liposomes, modified with the cartilage-targeting peptide Wyrgrl and loaded with tauroursodeoxycholic acid (TUDCA), are encapsulated within these hydrogel microspheres. The microspheres not only dissipate intra-articular impact forces, reducing vibration and pressure transmission, but also provide sustained release of TUDCA, alleviating ER stress and slowing OA progression. In vitro studies showed that the stress relaxation time constant (τ) of the microspheres was tuned to 23.81 s, closely resembling the mechanical properties of the cartilage matrix. This property, combined with targeted TUDCA delivery, reduced Grp78 and CHOP expression, alleviating ER stress and inhibiting chondrocyte apoptosis. In vivo, the microspheres preserved joint cartilage structure, suppressed ER stress responses, and substantially delayed OA progression. This strategy presents a promising approach to mitigating cartilage damage and delaying OA by reducing mechanical stress and alleviating ER stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267986 | PMC |
http://dx.doi.org/10.34133/research.0777 | DOI Listing |
Adv Healthc Mater
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China; Shanghai Key Laboratory of Cancer System Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital J
DNA exhibits remarkable versatility, which is attributed to its inherent molecular recognition capabilities, programmable sequences, and excellent biocompatibility. Among its various topological forms, branched DNA (bDNA), including Y-shaped DNA (Y-DNA), X-shaped DNA (X-DNA), etc., stands out as a fundamental building block for fabricating functional DNA-based materials and has demonstrated great promise across diverse applications in recent years.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.
Diabetic wounds are characterized by complex pathologies, such as vascular changes, nerve damage, and immune dysfunction, which make healing difficult. Hydrogel microspheres have shown great potential in the field of wound treatment due to their excellent biocompatibility, high water content, and soft physical properties. The review summarizes the preparation methods of hydrogel microspheres in detail, including microfluidic technology, spray method, electro spraying, emulsion method, phase separation, photomask method, and 3D printing technology.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, P.R. China.
Research on liposome-composite hydrogel microspheres (LHMs) drug delivery systems, primarily composed of drugs, liposomes, and hydrogels, has garnered growing scientific interest. LHMs exhibit biosafety, modifiability, a wide range of loaded drug categories (water-soluble or fat-soluble), controlled and sustainable drug release capability, and specific cell-targeted performance, which compensate for the shortcomings of conventional drug delivery methods due to the complementary advantages of liposome and hydrogel microspheres. In this review, we systematically analyze the existing literature on LHMs and provide a comprehensive overview of their preparation methods.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China.
Oxidative stress imbalance and inadequate lubrication are the primary symptoms of osteoarthritis (OA), and they are also significant factors contributing to the progression of OA. Herein, an injectable hydrogel microsphere designed is presented to mitigate the progression of OA, comprising gelatin methacryloyl (GelMA), methacrylated hyaluronic acid (HAMA), 3-acrylamide-phenylboronic acid (3-AAPBA), chitin nanocrystals (ChNCs), and naringin (Nar). Specifically, positively charged ChNCs facilitated adhesion of microspheres to cartilage and enhanced their lubrication function.
View Article and Find Full Text PDF