98%
921
2 minutes
20
Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the Occupational Safety and Health Administration (OSHA). Analysis of these contaminants is currently spearheaded by mass spectrometry (MS) coupled to liquid chromatography (LC) because of their high sensitivity and separation capabilities. Although effective, a major flaw in LC-MS analysis is its large consumption of solvents and the amount of time required for each experiment. Direct analysis in real time mass spectrometry (DART-MS) is a new technique that offers high sensitivity and permits rapid analysis with little to no sample preparation. Herein, we present the qualitative and quantitative analysis of PFASs and PPDs by high-resolution DART-MS, interfaced with ion mobility (IM) and tandem mass spectrometry (MS/MS) characterization, demonstrating the utility of this multidimensional approach for the fast separation and detection of environmental contaminants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251324 | PMC |
http://dx.doi.org/10.3390/molecules30132828 | DOI Listing |
F1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFBiomed Chromatogr
October 2025
College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China.
To evaluate the quality of pomegranate peels from different cultivars, pomegranate peel samples from 47 cultivars were compared and classified based on fingerprints and chemical components obtained using HPLC-PDA-MS/MS combined with chemometric methods. Three pattern recognition methods, namely, hierarchical cluster analysis, principal component analysis, and partial least square-discriminant analysis, were used to establish classification models. Results showed that the contents of 10 components from pomegranate peel were determined.
View Article and Find Full Text PDFCancer Biol Med
September 2025
Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, China.
Objective: Osimertinib (OSI) therapy, a cornerstone in treating non-small cell lung cancer (NSCLC), has been severely limited by rapidly developing acquired resistance. Inhibition of bypass activation using a combination strategy holds promise in overcoming this resistance. Biguanides, with excellent anti-tumor effects, have recently attracted much attention for this potential.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.
View Article and Find Full Text PDFCerebrovasc Dis Extra
August 2025
Background: This study investigates the impact of trimethylamine oxide (TMAO) on recurrent cerebral infarction in minor ischemic stroke (MIS).
Methods: A rat model was used, with dietary choline levels adjusted to vary TMAO levels. TMAO was quantified via liquid chromatography-mass spectrometry (LC-MS), and histological changes in brain and aortic tissues were analyzed using HE staining.