Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Toward commercialization of organic solar cells (OSCs), photoactive materials that enable high efficiency yet possess low cost should be developed. Fully non-fused ring electron acceptors (FNEAs) that extend the conjugated skeleton with carbon-carbon (C-C) single bonds solely have lower synthetic costs than their fused-ring counterparts. However, the power conversion efficiencies (PCEs) of FNEAs are lagging due to low acceptor crystallinity and difficulty in the formation of fibrillary bi-continuous interpenetrating network morphology. Herein, we report four FNEAs (NEH-4F, EEH-4F, NBO-4F, and EBO-4F) through rational design of peripheral substituents. Specifically, the encapsulated central core guarantees the planarity of the conjugated skeleton and improves acceptor crystallinity, while the lengthened outer side chains modulate the molecular stacking and regulate the thermodynamic compatibility between the FNEAs and the polymer donor PTTz. Therefore, nanoscale phase separation morphology with bi-continuous interpenetrating fibril network structures was found in the blend of PTTz:EBO-4F, which promotes exciton diffusion and charge transport in solar cells. A record-breaking PCE of 18.04% is thus obtained, which greatly reduces the efficiency gap between FNEAs and fused-ring electron acceptors. These results demonstrate the promising prospect of fabricating high-efficiency OSCs from low-cost FNEAs through rational molecular design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216490PMC
http://dx.doi.org/10.1038/s41467-025-60650-3DOI Listing

Publication Analysis

Top Keywords

solar cells
12
fully non-fused
8
electron acceptors
8
conjugated skeleton
8
acceptor crystallinity
8
bi-continuous interpenetrating
8
fneas
6
non-fused electron
4
electron acceptor
4
acceptor solar
4

Similar Publications

Dual-functional phthalamide modulation of aging-resistant PbI for efficient perovskite solar cells.

J Colloid Interface Sci

September 2025

School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China. Electronic address:

The sequential preparation of perovskite solar cells (PSCs) has received widespread concern for its use in large-scale perovskite modules and perovskite/silicon tandem solar cells. However, the instability of the PbI precursor solution and the incomplete reaction of ammonium salts hinder the industrialization of PSCs. Here, by introducing phthalamide (PA) into PbI solution, the carbonyl oxygen of PA molecules undergoes a bidentate coordination reaction with Pb to form an octahedral coordination structure, and the nitrogen atom in the -NH group exhibits weakly acidic properties due to the conjugation effect.

View Article and Find Full Text PDF

Life cycle toxicity and reduction potential analysis of perovskite photovoltaic technology.

J Environ Manage

September 2025

Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China. Electronic address:

Perovskite solar cells (PSCs), an emerging photovoltaic technology promising lower cost and higher efficiency, have been developed rapidly. However, the widespread use of lead in current PSCs raises toxicity concerns, prompting interest in lead-free alternatives. Despite this, comprehensive life cycle assessments of toxicity impacts across PSC types remain limited, potentially leading to biased technology choices and environmental harm.

View Article and Find Full Text PDF

NiO is a p-type semiconductor widely used as a hole transport material in perovskite solar cells (PSCs), yet the impact of fabrication methods on its interfacial properties and the underlying mechanisms remains unclear. This study investigates how the fabrication process─nanoparticle precursor (NP NiO) and sputtering deposition (SP NiO)─and interfacial space charge effects influence charge transport and device performance in NiO/perovskite systems. SP NiO exhibits a higher Ni/Ni ratio and greater conductivity but induces significant hole depletion and band bending at the interface, leading to reduced open-circuit voltage and efficiency.

View Article and Find Full Text PDF

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF

Monolithic perovskite/silicon tandem (PST) solar cells are rapidly emerging as next-generation solar cells with significant potential for commercialization. This study presents a proof of concept for a silicon diffused junction-based PST cell, utilizing a passivated emitter rear contact (PERC) cell with a low-temperature (<200 °C) laser-fired contact process to minimize thermal damage. By introducing amorphous silicon to the emitter surface of PERC bottom cell, the open circuit voltage (V) improve from 0.

View Article and Find Full Text PDF