Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To investigate the mechanical properties of concrete-foamed cement composite specimens (C-FCCS), uniaxial compression tests were conducted on composite specimens with varying proportions and strengths of foamed cement. The analysis focused on the peak compressive strength, peak strain, macroscopic failure morphology, and acoustic emission (AE) characteristics of C-FCCS. The experimental results indicate that the peak compressive strength of C-FCCS exhibits a negative correlation with the proportion of foamed cement and a positive correlation with the proportion of concrete. At foamed cement proportions of 10% and 20%, the peak compressive strength of C-FCCS is predominantly governed by concrete, with AE energy concentrated primarily during the initial loading phase and near the peak stress. In contrast, at foamed cement proportions ranging from 30 to 50%, the peak compressive strength is dominated by foamed cement, with AE energy concentrated around the peak stress. The peak strain of C-FCCS shows a trend of initially increasing and then decreasing with the increase in height ratio (Height ratio = Foamed cement height/C-FCCS height). Under different height ratios, the peak strain of C-FCCS is approximately 175.61-558.13% of that of pure concrete specimens. Furthermore, variations in the strength of foamed cement have a minimal impact on the peak compressive strength of C-FCCS but significantly affect the peak strain. The peak compressive strength of C-FCCS is about 77.67-83.87% of that of pure concrete specimens, while the peak strain ranges from 128.46 to 361.38%. Lastly, the macroscopic failure of C-FCCS is primarily characterized by tensile failure, with shear failure commonly observed at the edges and corner interfaces of C-FCCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216924PMC
http://dx.doi.org/10.1038/s41598-025-07304-yDOI Listing

Publication Analysis

Top Keywords

foamed cement
28
peak compressive
24
compressive strength
24
peak strain
20
strength c-fccs
16
peak
13
c-fccs
10
cement
9
mechanical properties
8
concrete foamed
8

Similar Publications

Microstructural and mechanical characterization of foamed concrete reinforced with scrap aluminum engine residue.

Sci Rep

August 2025

Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Al Majmaah, 11952, Saudi Arabia.

Foamed concrete (FC) is a lightweight cementitious material made by adding a stable pre-formed foam to a cement paste or mortar to make a homogenized mixture of a controlled low density. The present work aims at evaluating the effect Scrap Aluminum Engine Residue (SAER) has on fresh, mechanical, thermal, and microstructural properties of FC with a water-to-cement ratio of 0.4 at targeted densities of 900 kg/m (FC-900) and 1100 kg/m (FC-1100).

View Article and Find Full Text PDF

The increasing demand for sustainable construction materials has driven research into the reuse of plastic waste for renewable building applications. This study introduces a new lightweight insulating mortar for floor and roof systems, utilizing recycled rigid polyurethane (PU) foam as the primary aggregate. The binder mainly consists of Portland cement, with no added sand, and includes minor additives to enhance mechanical, physical, and thermal properties.

View Article and Find Full Text PDF

Autoclaved aerated concrete (AAC) is valued for its lightweight, insulating, and load-bearing capabilities, yet high-efficiency optimizing density and strength remains challenging. Efficient design of tailings-based AAC now requires considering synergistic effects among multiple variables, as single-variable control has become inadequate. To address this gap, this study systematically investigates the synergy among lime-cement ratio (LCr), calcium-silica ratio (CSr), and water-solid ratio (Wr) in AAC produced with molybdenum tailings as the primary siliceous resource.

View Article and Find Full Text PDF

This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair.

View Article and Find Full Text PDF

In this study, sodium hydroxide and calcium hydroxide are employed as activators to enhance the properties of foam concrete with hybrid alkali-activated cementitious material as the base mix. The effect of the activators on the properties of foam concrete is studied. The experimental results reveal that the presence of sodium hydroxide can also enhance the hydration rate of the base mix and increase the density of the pore wall in foamed concrete, thus enhancing the compressive strength of foamed concrete.

View Article and Find Full Text PDF